81
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The possible role of dermatophyte cysteine dioxygenase in keratin degradation

, &
Pages 449-454 | Received 11 Jan 2013, Accepted 05 Apr 2013, Published online: 13 Jun 2013

References

  • Ogawa H, Summerbell RC, Clemons KV, et al. Dermatophytes and host defence in cutaneous mycoses. Med Mycol 1998; 36 (Suppl. 1): 166–173.
  • Nir-Paz R, Elinav H, Pierard GE, et al. Deep infection by Trichophyton rubrum in an immunocompromised patient. J Clin Microbiol 2003; 41: 5298–5301.
  • Tateishi Y, Sato H, Akiyama M, et al. Severe generalized deep dermatophytosis due to Trichophyton rubrum (trichophytic granuloma) in a patient with atopic dermatitis. Arch Dermatol 2004; 140: 624–625.
  • Woodfolk JA, Slunt JB, Deuell B, Hayden ML, Platts-Mills TA. Definition of a Trichophyton protein associated with delayed hypersensitivity in humans. Evidence for immediate (IgE and IgG4) and delayed hypersensitivity to a single protein. J Immunol 1996; 156: 1695–1701.
  • Ward GW Jr, Karlsson G, Rose G, Platts-Mills TA. Trichophyton asthma: sensitisation of bronchi and upper airways to dermatophyte antigen. Lancet 1989; 1: 859–862.
  • Ward GW Jr, Woodfolk JA, Hayden ML, Jackson S, Platts-Mills TA. Treatment of late-onset asthma with fluconazole. J Allergy Clin Immunol 1999; 104: 541–546.
  • Vermout S, Tabart J, Baldo A, et al. Pathogenesis of dermatophytosis. Mycopathologia 2008; 166: 267–275.
  • Stipanuk MH, Ueki I, Dominy JE Jr, Simmons CR, Hirschberger LL. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 2009; 37: 55–63.
  • Stipanuk MH, Bagley PJ, Coloso RM, Banks MF. Metabolism of cysteine to taurine by rat hepatocytes. Adv Exp Med Biol 1992; 315: 413–421.
  • Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 2004; 24: 539–577.
  • Perry TL, Norman MG, Yong VW, et al. Hallervorden-Spatz disease: cysteine accumulation and cysteine dioxygenase deficiency in the globus pallidus. Ann Neurol 1985; 18: 482–489.
  • Emery P, Bradley H, Arthur V, Tunn E, Waring R. Genetic factors influencing the outcome of early arthritis – the role of sulphoxidation status. Br J Rheumatol 1992; 31: 449–451.
  • Gordon C, Bradley H, Waring RH, Emery P. Abnormal sulphur oxidation in systemic lupus erythematosus. Lancet 1992; 339: 25–26.
  • Brait M, Ling S, Nagpal JK, et al. Cysteine dioxygenase 1 is a tumor suppressor gene silenced by promoter methylation in multiple human cancers. PLoS One 2012; 7: e44951.
  • Kumar V, Maresca B, Sacco M, et al. Purification and characterization of a cysteine dioxygenase from the yeast phase of Histoplasma capsulatum. Biochemistry 1983; 22: 762–768.
  • Maresca B, Lambowitz AM, Kumar VB, et al. Role of cysteine in regulating morphogenesis and mitochondrial activity in the dimorphic fungus Histoplasma capsulatum. Proc Natl Acad Sci USA 1981; 78: 4596–4600.
  • Sacco M, Maresca B, Kumar BV, Kobayashi GS, Medoff G. Temperature- and cyclic nucleotide-induced phase transitions of Histoplasma capsulatum. J Bacteriol 1981; 146: 117–120.
  • Valtavaara M, Papponen H, Pirttila AM, et al. Cloning and characterization of a novel human lysyl hydroxylase isoform highly expressed in pancreas and muscle. J Biol Chem 1997; 272: 6831–6834.
  • Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol 2004; 12: 317–324.
  • Kunert J. Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Experientia 1972; 28: 1025–1026.
  • Kunert J. Keratin decomposition by dermatophytes. II. Presence of s-sulfocysteine and cysteic acid in soluble decomposition products. Z Allg Mikrobiol 1976; 16: 97–105.
  • Kunert J. Physiology of keratinophilic fungi. In: Kushwaha RKS, Guarro J (eds). Biology of Dermatophytes and Other Keratinophilic Fungi. Bilbao, Spain: Revista Iberoamericana de Micologia, 2000: 77–85.
  • Dominy JE Jr, Simmons CR, Karplus PA, Gehring AM, Stipanuk MH. Identification and characterization of bacterial cysteine dioxygenases: a new route of cysteine degradation for eubacteria. J Bacteriol 2006; 188: 5561–5569.
  • Cook AM, Denger K, Smits TH. Dissimilation of C3-sulfonates. Arch Microbiol 2006; 185: 83–90.
  • Denger K, Smits TH, Cook AM. L-cysteate sulpho-lyase, a widespread pyridoxal 5′-phosphate-coupled desulphonative enzyme purified from Silicibacter pomeroyi DSS-3(T). Biochem J 2006; 394: 657–664.
  • Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 2009; 214: 516–559.
  • Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol 2008; 129: 705–733.
  • Marshall RC, Orwin DF, Gillespie JM. Structure and biochemistry of mammalian hard keratin. Electron Microsc Rev 1991; 4: 47–83.
  • Horvath AL. Solubility of structurally complicated materials: 3. Hair. Scientific World J 2009; 9: 255–271.
  • Hill P, Brantley H, Van Dyke M. Some properties of keratin biomaterials: kerateines. Biomaterials 2010; 31: 585–593.
  • Langbein L, Schweizer J. Keratins of the human hair follicle. Int Rev Cytol 2005; 243: 1–78.
  • Rogers MA, Langbein L, Praetzel-Wunder S, Winter H, Schweizer J. Human hair keratin-associated proteins (KAPs). Int Rev Cytol 2006; 251: 209–263.
  • Bruce Fraser RD, Parry DA. The role of disulfide bond formation in the structural transition observed in the intermediate filaments of developing hair. J Struct Biol 2012; 180: 117–124.
  • Gong H, Zhou H, McKenzie GW, et al. An updated nomenclature for keratin-associated proteins (KAPs). Int J Biol Sci 2012; 8: 258–264.
  • Monod M. Secreted proteases from dermatophytes. Mycopathologia 2008; 166: 285–294.
  • Lechenne B, Reichard U, Zaugg C, et al. Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology 2007; 153: 905–913.
  • Stipanuk MH, Dominy JE Jr, Lee JI, Coloso RM. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 2006; 136: 1652S–1659S.
  • Stipanuk MH, Simmons CR, Karplus PA, Dominy JE Jr. Thiol dioxygenases: unique families of cupin proteins. Amino Acids 2011; 41: 91–102.
  • Kasperova A, Kunert J, Horynova M, et al. Isolation of recombinant cysteine dioxygenase protein from Trichophyton mentagrophytes. Mycoses 2011; 54: e456–462.
  • Dominy JE Jr, Simmons CR, Hirschberger LL, et al. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J Biol Chem 2007; 282: 25189–25198.
  • Kumar D, Thiel W, de Visser SP. Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes. J Am Chem Soc 2011; 133: 3869–3882.
  • Kumar D, Sastry GN, Goldberg DP, de Visser SP. Mechanism of S-oxygenation by a cysteine dioxygenase model complex. J Phys Chem A 2012; 116: 582–591.
  • Yamaguchi K, Hosokawa Y, Kohashi N, et al. Rat liver cysteine dioxygenase (cysteine oxidase). Further purification, characterization, and analysis of the activation and inactivation.J Biochem 1978; 83: 479–491.
  • Sakakibara S, Yamaguchi K, Hosokawa Y, Kohashi N, Ueda I. Purification and some properties of rat liver cysteine oxidase (cysteine dioxygenase). Biochim Biophys Acta 1976; 422: 273–279.
  • Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW. Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci 2001; 26: 740–746.
  • McCoy JG, Bailey LJ, Bitto E, et al. Structure and mechanism of mouse cysteine dioxygenase. Proc Natl Acad Sci USA 2006; 103: 3084–3089.
  • Simmons CR, Liu Q, Huang Q, et al. Crystal structure of mammalian cysteine dioxygenase. A novel mononuclear iron center for cysteine thiol oxidation. J Biol Chem 2006; 281: 18723–18733.
  • Ye S, Wu X, Wei L, et al. An insight into the mechanism of human cysteine dioxygenase. Key roles of the thioether-bonded tyrosine-cysteine cofactor.J Biol Chem 2007; 282: 3391–3402.
  • Aluri S, de Visser SP. The mechanism of cysteine oxygenation by cysteine dioxygenase enzymes. J Am Chem Soc 2007; 129: 14846–14847.
  • Bella DL, Hahn C, Stipanuk MH. Effects of nonsulfur and sulfur amino acids on the regulation of hepatic enzymes of cysteine metabolism. Am J Physiol 1999; 277: E144–153.
  • Bella DL, Hirschberger LL, Hosokawa Y, Stipanuk MH. Mechanisms involved in the regulation of key enzymes of cysteine metabolism in rat liver in vivo. Am J Physiol 1999; 276: E326–335.
  • Stipanuk MH, Londono M, Lee JI, Hu M, Yu AF. Enzymes and metabolites of cysteine metabolism in nonhepatic tissues of rats show little response to changes in dietary protein or sulfur amino acid levels. J Nutr 2002; 132: 3369–3378.
  • Grumbt M, Monod M, Yamada T, et al. Keratin degradation by dermatophytes relies on cysteine dioxygenase and a sulfite efflux pump. J Invest Dermatol 2013; 133: 1550–1555.
  • Rybnikar A, Chumela J, Vrzal V, Krupka V. Immunity in cattle vaccinated against ringworm. Mycoses 1991; 34: 433–436.
  • Raska M, Rybnikar A, Chumela J, Belakova J, Weigl E. Recombinant protein and DNA vaccines derived from hsp60 Trichophyton mentagrophytes control the clinical course of trichophytosis in bovine species and guinea-pigs. Mycoses 2004; 47: 407–417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.