Publication Cover
Archives of Physiology and Biochemistry
The Journal of Metabolic Diseases
Volume 117, 2011 - Issue 2
775
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Soluble CD36− a marker of the (pathophysiological) role of CD36 in the metabolic syndrome?

, &
Pages 57-63 | Received 31 Oct 2010, Accepted 22 Nov 2010, Published online: 21 Jan 2011

References

  • Aguer C, Mercier J, Man CY, Metz L, Bordenave S, Lambert K, Jean E, Lantier L, Bounoua L, Brun JF, et al. (2010). Intramyocellular lipid accumulation is associated with permanent relocation ex vivo and in vitro of fatty acid translocase (FAT)/CD36 in obese patients. Diabetologia 53:1151–63.
  • Alberti KG, Zimmet P, SHAW J. (2006). Metabolic syndrome− a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med 23:469–80.
  • An P, Freedman BI, Hanis CL, Chen YD, Weder AB., Schork NJ, Boerwinkle E, Province MA., Hsiung CA, Wu X, et al. (2005). Genome-wide linkage scans for fasting glucose, insulin, and insulin resistance in the National Heart, Lung, and Blood Institute Family Blood Pressure Program: Evidence of linkages to chromosome 7q36 and 19q13 from meta-analysis. Diabetes 54:909–14.
  • Arya R, Blangero J, Williams K, Almasy L, Dyer TD, Leach RJ, O’Connell P, Stern MP, Duggirala R. (2002). Factors of insulin resistance syndrome− related phenotypes are linked to genetic locations on chromosomes 6 and 7 in nondiabetic Mexican-Americans. Diabetes 51:841–7.
  • Bokor S, Legry V, Meirhaeghe A, Ruiz JR, Mauro B, Widhalm K, Manios Y, Amouyel P, Moreno LA, Molnar D, Dallongeville J. (2009). Single-nucleotide polymorphism of CD36 locus and obesity in European adolescents. Obesity (Silver Spring) 18:1398–403.
  • Bonen A, Parolin ML, Steinberg GR, Calles-Escandon J, Tandon NN, Glatz JF, Luiken JJ, Heigenhauser GJ, Dyck DJ. (2004). Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J 18:1144–6.
  • Bonen A, Tandon NN, Glatz JF, Luiken JJ, Heigenhauser GJ. (2006).The fatty acid transporter FAT/CD36 is upregulated in subcutaneous and visceral adipose tissues in human obesity and type 2 diabetes. Int J Obes (Lond) 30:877–83.
  • Chmielewski M, Bragfors-Helin AC, Stenvinkel P, Lindholm B, Anderstam B. (2010). Serum soluble CD36, assessed by a novel monoclonal antibody-based sandwich ELISA, predicts cardiovascular mortality in dialysis patients. Clin Chim Acta 411:2079–82.
  • Choquet H, Labrune Y, de Graeve F, Hinney A, Hebebrand J, Scherag A, Lecoer C, Tauber M, Balkau B, Elliot P, et al. (2010).Lack of association of CD36 SNPs with early onset obesity: A meta-analysis in 9973 European subjects. Obesity (Silver Spring). doi:10.1038/oby.2010.226 epub ahead of print.
  • Collot-Teixeira S, Martin J, McDermott-Roe C, Poston R, McGregor JL. (2007). CD36 and macrophages in atherosclerosis. Cardiovasc Res 75:468–77.
  • Coort SL, Hasselbaink DM, Koonen DP, Willems J, Coumans WA, Chabowski A, van der Vusse GJ, Bonen A, Glatz JF, Luiken JJ. (2004a). Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats. Diabetes 53:1655–63.
  • Coort SL, Luiken JJ, van der Vusse GJ, Bonen A, Glatz, JF. (2004b). Increased FAT (fatty acid translocase)/CD36-mediated long-chain fatty acid uptake in cardiac myocytes from obese Zucker rats. Biochem Soc Trans 32:83–5.
  • Corpeleijn E, Petersen L, Holst C, Saris WH, Astrup A, Langin D, MacDonald I, Martinez JA, Oppert JM, Polak J, et al. (2010). Obesity-related polymorphisms and their associations with the ability to regulate fat oxidation in obese Europeans: The NUGENOB study. Obesity (Silver Spring) 18:1369–77.
  • Febbraio M, Podrez EA, Smith JD, Hajjar DP., Hazen SL, Hoff HF, Sharma K, Silverstein RL. (2000). Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 105:1049–56.
  • Fernandez-Real, J. M., Handberg, A., Ortega, F., Hojlund, K., Vendrell J, Ricart W. (2009). Circulating soluble CD36 is a novel marker of liver injury in subjects with altered glucose tolerance. J Nutr Biochem 20:477–84.
  • Glatz F, Luiken J, Bonen, A. (2010), Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90:367–417.
  • Glintborg D, Hojlund K, Andersen M, Henriksen JE, Beck-Nielsen H, Handberg A. (2008). Soluble CD36 and risk markers of insulin resistance and atherosclerosis are elevated in polycystic ovary syndrome and significantly reduced during pioglitazone treatment. Diabetes Care 31:328–34.
  • Goyenechea E, Collins LJ, Parra D, Liu G, Snieder H, Swaminathan R, Spector TD., Martinez JA, O’Dell SD. (2008). CD36 gene promoter polymorphisms are associated with low density lipoprotein-cholesterol in normal twins and after a low-calorie diet in obese subjects. Twin Res Hum Genet 11:621–8.
  • Greco D, Kotronen A, Westerbacka J, Puig O, Arkkila P, Kiviluoto T, Laitinen S, Kolak M, Fisher RM, Hamsten A, et al. (2008). Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol 294:G1281–7.
  • Griffen E, Re A, Hamel N, Fu C, Bush H, McCaffrey T, Asch AS. (2001). A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation. Nat Med 7:840–6.
  • Han XX, Chabowski A, Tandon NN, Calles-Escandon J, Glatz JF, Luiken JJ, Bonen A. (2007). Metabolic challenges reveal impaired fatty acid metabolism and translocation of FAT/CD36 but not FABPpm in obese Zucker rat muscle. Am J Physiol Endocrinol Metab 293:E566–75.
  • Handberg A, Levin K, Hojlund K, Beck-Nielsen H. (2006). Identification of the oxidized low-density lipoprotein scavenger receptor CD36 in plasma: A novel marker of insulin resistance. Circulation 114:1169–76.
  • Handberg A, Lopez-Bermejo A, Bassols J, Vendrell J, Ricart W, Fernandez-Real JM. (2009). Circulating soluble CD36 is associated with glucose metabolism and interleukin-6 in glucose-intolerant men. Diab Vasc Dis Res 6:15–20.
  • Handberg A, Norberg M, Stenlund H, Hallmans G, Attermann J, Eriksson JW. (2010). Soluble CD36 (sCD36) clusters with markers of insulin resistance, and high sCD36 is associated with increased type 2 diabetes risk. J Clin Endocrinol Metab 95:1939–46.
  • Handberg, A., Skjelland, M., Michelsen, A. E., Sagen, E. L., Krohg-Sorensen, K., Russell, D., Dahl, A., Ueland, T., Oie, E., Aukrust, P, et al. (2008). Soluble CD36 in plasma is increased in patients with symptomatic atherosclerotic carotid plaques and is related to plaque instability. Stroke 39:3092–5.
  • Hegarty BD, Cooney GJ, Kraegen EW, Furler SM. (2002). Increased efficiency of fatty acid uptake contributes to lipid accumulation in skeletal muscle of high fat-fed insulin-resistant rats. Diabetes 51:1477–84.
  • Hegarty BD, Furler SM, Ye J, Cooney GJ, Kraegen EW. (2003). The role of intramuscular lipid in insulin resistance. Acta Physiol Scand 178:373–83.
  • Heni M, Mussig K, Machicao F, Machann J, Schick F, Claussen CD, Stefan N, Fritsche A, Haring HU, Staiger H. (2010). Variants in the CD36 gene locus determine whole-body adiposity, but have no independent effect on insulin sensitivity. Obesity (Silver Spring). doi:10.1038/oby.2010.251 epub ahead of print.
  • Holloway GP, Benton CR, Mullen KL, Yoshida Y, Snook LA, Han XX, Glatz JF, Luiken JJ, Lally J, Dyck DJ, et al. (2009). In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Am J Physiol Endocrinol Metab 296:E738–47.
  • Holvoet P, de Keyzer D, Jacobs DR. (2008). Oxidized LDL and the metabolic syndrome. Future Lipidol 3:637–649.
  • Kashyap SR, Ioachimescu AG, Gornik HL, Gopan T, Davidson MB, Makdissi A, Major J, Febbraio M, Silverstein RL. (2009). Lipid-induced insulin resistance is associated with increased monocyte expression of scavenger receptor CD36 and internalization of oxidized LDL. Obesity (Silver Spring) 17:2142–8.
  • Kloting N, Fasshauer M, Dietrich A, Kovacs P, Schon MR, Kern M, Stumvoll M, Bluher M. (2010). Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 299:E506–15.
  • Koonen DP, Jacobs RL, Febbraio M, Young ME, Soltys CL, Ong H, Vance DE, Dyck JR. (2007). Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes 56:2863–71.
  • Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW. (2002). Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277:49982–8.
  • Lepretre F, Linton KJ, Lacquemant C, Vatin V, Samson C, Dina C, Chikri M, Ali S, Scherer P, Seron K, et al. (2004a). Genetic study of the CD36 gene in a French diabetic population. Diabetes Metab 30:459–63.
  • Lepretre F, Vasseur F, Vaxillaire M, Scherer PE, Ali S, Linton K, Aitman T, Froguel P. (2004b). A CD36 nonsense mutation associated with insulin resistance and familial type 2 diabetes. Hum Mutat 24:104.
  • Liang CP, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, Tall AR. (2004). Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 113:764–73.
  • Love-Gregory L, Sherva R, Schappe T, Qi JS, McCrea J, Klein S, Connelly MA, Abumrad N. A. (2010). Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum Mol Genet 20:193–201.
  • Love-Gregory L, Sherva R, Sun L, Wasson J, Schappe T, Doria A, Rao DC, Hunt SC, Klein S, Neuman RJ, et al. (2008). Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum Mol Genet 17:1695–704.
  • Luiken JJ, Arumugam Y, Dyck DJ, Bell RC, Pelsers MM, Turcotte LP, Tandon NN, Glatz JF, Bonen A. (2001). Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem 276:40567–73.
  • Ma X, Bacci S, Mlynarski W, Gottardo L, Soccio T, Menzaghi C, Iori E, Lager RA, Shroff AR, Gervino EV, et al. (2004). A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum Mol Genet 13:2197–205.
  • Malhotra A, Elbein SC, Ng MC, Duggirala R, Arya R, Imperatore G, Adeyemo A, Pollin TI, Hsueh WC, Chan JC, et al. (2007). Meta-analysis of genome-wide linkage studies of quantitative lipid traits in families ascertained for type 2 diabetes. Diabetes 56:890–6.
  • Ouwens DM, Diamant M, Fodor M, Habets DD, Pelsers MM, El Hasnaoui M, Dang ZC, van den Brom CE, Vlasblom R, Rietdijk A, et al. (2007). Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 50:1938–48.
  • Podrez EA, Byzova TV, Febbraio M, Salomon RG, Ma Y, Valiyaveettil M, Poliakov E, Sun M, Finton PJ, Curtis BR, et al. (2007). Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 13:1086–95.
  • Podrez EA, Febbraio M, Sheibani N, Schmitt D, Silverstein RL, Hajjar DP, Cohen PA, Frazier WA, Hoff HF, Hazen SL. (2000). Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest 105:1095–108.
  • Podrez, E. A., Poliakov, E., Shen, Z., Zhang, R., Deng, Y., Sun, M., Finton, P. J., Shan, L., Febbraio M, Hajjar DP, et al. (2002). A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem 277:38517–23.
  • Qin B, Polansky MM, Anderson RA. (2010a). Cinnamon extract regulates plasma levels of adipose-derived factors and expression of multiple genes related to carbohydrate metabolism and lipogenesis in adipose tissue of fructose-fed rats. Horm Metab Res 42:187–93.
  • Qin B, Polansky MM, Harry D, Anderson RA. (2010b). Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats. Mol Nutr Food Res 54 Suppl 1:S14–23.
  • Rac ME, Safranow K, Poncyljusz W. (2007). Molecular basis of human CD36 gene mutations. Mol Med 13:288–96.
  • Rocha VZ, Libby P. (2009). Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 6:399–409.
  • Sampson MJ, Davies IR, Braschi S, Ivory K, Hughes DA. (2003). Increased expression of a scavenger receptor (CD36) in monocytes from subjects with Type 2 diabetes. Atherosclerosis 167:129–34.
  • Shoelson SE, Herrero L, Naaz A. (2007). Obesity, inflammation, and insulin resistance. Gastroenterology 132:2169–80.
  • Shoelson SE, Lee J, Goldfine AB. (2006). Inflammation and insulin resistance. J Clin Invest 116:1793–801.
  • Silverstein RL. (2009). Inflammation, atherosclerosis, and arterial thrombosis: role of the scavenger receptor CD36. Cleve Clin J Med 76 Suppl 2:S27–30.
  • Smith AC, Mullen KL, Junkin KA, Nickerson J, Chabowsky A, Bonen A, Dyck DJ. (2007). Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia. Am J Physiol Endocrinol Metab 293:E172–81.
  • Su X, Abumrad NA. (2009). Cellular fatty acid uptake: A pathway under construction. Trends Endocrinol Metab 20:72–7.
  • Valiyaveettil M, Podrez EA. (2009). Platelet hyperreactivity, scavenger receptors and atherothrombosis. J Thromb Haemost 7 Suppl 1:218–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.