871
Views
39
CrossRef citations to date
0
Altmetric
Review Article

Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: Marker or maker of the diabetic phenotype?

, &
Pages 156-189 | Received 15 Dec 2011, Accepted 07 Jan 2012, Published online: 05 Mar 2012

References

  • Abdul-Ghani, M.A., Jani, R., Chavez, A., Molina-Carrion, M., Tripathy, D. & Defronzo, R.A. 2009. Mitochondrial reactive oxygen species generation in obese non-diabetic and type 2 diabetic participants. Diabetologia, 52, 574–582.
  • Abril, J., de Heredia, M.L., González, L., Clèries, R., Nadal, M., Condom, E., Aguiló, F., Gómez-Zaera, M. & Nunes, V. 2008. Altered expression of 12S/MT-RNR1, MT-CO2/COX2, and MT-ATP6 mitochondrial genes in prostate cancer. Prostate, 68, 1086–1096.
  • Ago, T., Yeh, I., Yamamoto, M., Schinke-Braun, M., Brown, J.A., Tian, B. & Sadoshima, J. 2006. Thioredoxin1 upregulates mitochondrial proteins related to oxidative phosphorylation and TCA cycle in the heart. Antioxid.Redox.Signal., 8, 1635–1650.
  • Ahmed, M., Muhammed, S.J., Kessler, B. & Salehi, A. 2010. Mitochondrial proteome analysis reveals altered expression of voltage dependent anion channels in pancreatic–cells exposed to high glucose. Islets, 2, 283–292. Epub 2010 Sep 1.
  • Amary, M.F., Bacsi, K., Maggiani, F., Damato, S., Halai, D., Berisha, F., Pollock, R., O’Donnell, P., Grigoriadis, A., Diss, T., Eskandarpour, M., Presneau, N., Hogendoorn, P.C., Futreal, A., Tirabosco, R. & Flanagan, A.M. 2011. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J.Pathol., 224, 334–343.
  • American Diabetes Association. Total Prevalence of Diabetes and Pre-diabetes. 2008.
  • Amos, A.F., McCarty, D.J., & Zimmet, P. 1997. The rising global burden of diabetes and its complications, estimates and projections to the year 2010. Diabet.Med., 14 Suppl 5, S1–85.
  • Andersson, U., Leighton, B., Young, M.E., Blomstrand, E. & Newsholme, E.A. 1998. Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide. Biochem.Biophys.Res.Commun., 249, 512–516.
  • Aponte, A.M., Phillips, D., Hopper, R.K., Johnson, D.T., Harris, R.A., Blinova, K., Boja, E.S., French, S. & Balaban, R.S. 2009. Use of (32)P to study dynamics of the mitochondrial phosphoproteome. J.Proteome.Res., 8, 2679–2695.
  • Applegate, M.A., Humphries, K.M. & Szweda, L.I. 2008. Reversible inhibition of α-Ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry, 47, 473–478.
  • Astuti, D., Latif, F., Dallol, A., Dahia, P.L., Douglas, F., George, E., Sköldberg, F., Husebye, E.S., Eng, C. & Maher, E.R. 2001. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am.J.Hum.Genet., 69, 49–54.
  • Au, H.C. & Scheffler, I.E. 1998. Promoter analysis of the human succinate dehydrogenase iron-protein gene–both nuclear respiratory factors NRF-1 and NRF-2 are required. Eur.J.Biochem., 251, 164–174.
  • Bardella, C., Pollard, P.J. & Tomlinson, I. 2011. SDH mutations in cancer. Biochim.Biophys.Acta., 1807, 1432–1443.
  • Barnes, S.J. & Weitzman, P.D. 1986. Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett., 201, 267–270.
  • Barrera, C.R., Namihira, G., Hamilton, L., Munk, P., Eley, M.H., Linn, T.C. & Reed, L.J. 1972. -Keto acid dehydrogenase complexes. XVI. Studies on the subunit structure of the pyruvate dehydrogenase complexes from bovine kidney and heart. Arch.Biochem.Biophys., 148, 343–358.
  • Bayley, J.P. & Devilee, P. 2010. Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree? Curr.Opin.Genet.Dev., 20, 324–329.
  • Bayley, J.P., Devilee, P. & Taschner, P.E. 2005. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency. BMC.Med.Genet., 6, 39.
  • Baysal, B.E., Ferrell, R.E., Willett-Brozick, J.E., Lawrence, E.C., Myssiorek, D., Bosch, A., van der Mey, A., Taschner, P.E., Rubinstein, W.S., Myers, E.N., Richard, C.W. 3rd, Cornelisse, C.J., Devilee, P. & Devlin, B. 2000. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287, 848–851.
  • Baysal, B.E., Lawrence, E.C. & Ferrell, R.E. 2007. Sequence variation in human succinate dehydrogenase genes: evidence for long-term balancing selection on SDHA. BMC.Biol., 5, 12.
  • Baysal, B.E., Willett-Brozick, J.E., Lawrence, E.C., Drovdlic, C.M., Savul, S.A., McLeod, D.R., Yee, H.A., Brackmann, D.E., Slattery, W.H., Myers, E.N., Ferrell, R.E., & Rubinstein, W.S., III, 2002. Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas. J.Med.Genet., 39, 178–183.
  • Beck-Nielsen, H. 1998. Mechanisms of insulin resistance in non-oxidative glucose metabolism: the role of glycogen synthase. J.Basic.Clin.Physiol.Pharmacol., 9, 255–279.
  • Beck-Nielsen, H. & Groop, L.C. 1994. Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus. J.Clin.Invest., 94, 1714–1721.
  • Beck-Nielsen, H., Vaag, A., Poulsen, P. & Gaster, M. 2003. Metabolic and genetic influence on glucose metabolism in type 2 diabetic subjects–experiences from relatives and twin studies. Best.Pract.Res.Clin.Endocrinol.Metab., 17, 445–467.
  • Beeckmans, S. & Kanarek, L. 1981. Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase. Eur.J.Biochem., 117, 527–535.
  • Beeckmans, S. & Van Driessche, E. 1998. Pig heart fumarase contains two distinct substrate-binding sites differing in affinity. J.Biol.Chem., 273, 31661–31669.
  • Befroy, D.E., Petersen, K.F., Dufour, S., Mason, G.F., de Graaf, R.A., Rothman, D.L. & Shulman, G.I. 2007. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes, 56, 1376–1381.
  • Berg, J.M., Tymoczko, J.L. & Stryer, L. 2011. Biochemistry Publisher: W. H. Freeman; Seventh Edition edition (December 24, 2010).
  • Birky, C.W. Jr. 2001. The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, models. Annu.Rev.Genet., 35, 125–148.
  • Bogdanos, D.P. & Komorowski, L. 2011. Disease-specific autoantibodies in primary biliary cirrhosis. Clin.Chim.Acta., 412, 502–512.
  • Borodovsky, A., Seltzer, M.J., & Riggins, G.J. 2011. Altered cancer cell metabolism in gliomas with mutant IDH1 or IDH2. Curr.Opin.Oncol.
  • Bota, D.A. & Davies, K.J. 2002. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat.Cell.Biol., 4, 674–680.
  • Bota, D.A., Van Remmen, H. & Davies, K.J. 2002. Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett., 532, 103–106.
  • Bourgeron, T., Chretien, D., Poggi-Bach, J., Doonan, S., Rabier, D., Letouzé, P., Munnich, A., Rötig, A., Landrieu, P. & Rustin, P. 1994. Mutation of the fumarase gene in two siblings with progressive encephalopathy and fumarase deficiency. J.Clin.Invest., 93, 2514–2518.
  • Bourgeron, T., Rustin, P., Chretien, D., Birch-Machin, M., Bourgeois, M., Viegas-Péquignot, E., Munnich, A. & Rötig, A. 1995. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat.Genet., 11, 144–149.
  • Brière, J.J., Favier, J., Bénit, P., El Ghouzzi, V., Lorenzato, A., Rabier, D., Di Renzo, M.F., Gimenez-Roqueplo, A.P. & Rustin, P. 2005. Mitochondrial succinate is instrumental for HIF1α nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum.Mol.Genet., 14, 3263–3269.
  • Brière, J.J., Favier, J., Gimenez-Roqueplo, A.P. & Rustin, P. 2006. Tricarboxylic acid cycle dysfunction as a cause of human diseases and tumor formation. Am.J.Physiol,.Cell.Physiol., 291, C1114–C1120.
  • Bubber, P., Haroutunian, V., Fisch, G., Blass, J.P. & Gibson, G.E. 2005. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann.Neurol., 57, 695–703.
  • Bulteau, A.L., Ikeda-Saito, M. & Szweda, L.I. 2003. Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry, 42, 14846–14855.
  • Burnichon, N., Brière, J.J., Libé, R., Vescovo, L., Rivière, J., Tissier, F., Jouanno, E., Jeunemaitre, X., Bénit, P., Tzagoloff, A., Rustin, P., Bertherat, J., Favier, J. & Gimenez-Roqueplo, A.P. 2010. SDHA is a tumor suppressor gene causing paraganglioma. Hum.Mol.Genet., 19, 3011–3020.
  • Butta, N., González-Manchón, C., Arias-Salgado, E.G., Ayuso, M.S. & Parrilla, R. 2001. Cloning and functional characterization of the 5′ flanking region of the human mitochondrial malic enzyme gene. Regulatory role of Sp1 and AP-2. Eur.J.Biochem., 268, 3017–3027.
  • Carrozzo, R., Dionisi-Vici, C., Steuerwald, U., Lucioli, S., Deodato, F., Di Giandomenico, S., Bertini, E., Franke, B., Kluijtmans, L.A., Meschini, M.C., Rizzo, C., Piemonte, F., Rodenburg, R., Santer, R., Santorelli, F.M., van Rooij, A., Vermunt-de Koning, D., Morava, E. & Wevers, R.A. 2007. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain, 130, 862–874.
  • Ceccarelli, C., Grodsky, N.B., Ariyaratne, N., Colman, R.F. & Bahnson, B.J. 2002. Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. Insights into the enzyme mechanism. J.Biol.Chem., 277, 43454–43462.
  • Cecchini, G. 2003. Function and structure of complex II of the respiratory chain. Annu.Rev.Biochem., 72, 77–109.
  • Chen, L. & Lopes, J.M. 2010. Multiple bHLH proteins regulate CIT2 expression in Saccharomyces cerevisiae. Yeast, 27, 345–359.
  • Chen, X.J., Wang, X., Kaufman, B.A. & Butow, R.A. 2005. Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science, 307, 714–717.
  • Cheng, T.L., Liao, C.C., Tsai, W.H., Lin, C.C., Yeh, C.W., Teng, C.F. & Chang, W.T. 2009. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase. J.Cell.Biochem., 107, 1002–1015.
  • Chepelev, N.L., Bennitz, J.D., Wright, J.S., Smith, J.C. & Willmore, W.G. 2009. Oxidative modification of citrate synthase by peroxyl radicals and protection with novel antioxidants. J. Enzyme. Inhib. Med. Chem., 24, 1319–1331.
  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V. & Mann, M. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325, 834–840.
  • Cimen, H., Han, M.J., Yang, Y., Tong, Q., Koc, H. & Koc, E.C. 2010. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry, 49, 304–311.
  • Cohen, P.F. & Colman, R.F. 1972. Diphosphopyridine nucleotide dependent isocitrate dehydrogenase from pig heart. Charactgerization of the active substrate and modes of regulation. Biochemistry, 11, 1501–1508.
  • Colman, R.F. 1972. Substrate independence of molecular weight of triphosphopyridine nucleotide-specific isocitrate dehydrogenase. J.Biol.Chem., 247, 6727–6729.
  • Cordwell, S.J. 1999. Microbial genomes and “missing” enzymes: redefining biochemical pathways. Arch.Microbiol., 172, 269–279.
  • Cozzone, A.J. & El-Mansi, M. 2005. Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli. J.Mol.Microbiol.Biotechnol., 9(3-4) 132–146.
  • Cui, Z., Hou, J., Chen, X., Li, J., Xie, Z., Xue, P., Cai, T., Wu, P., Xu, T. & Yang, F. 2010. The profile of mitochondrial proteins and their phosphorylation signaling network in INS-1 β cells. J.Proteome.Res., 9, 2898–2908.
  • D’Souza, S.F. & Srere, P.A. 1983. Binding of citrate synthase to mitochondrial inner membranes. J.Biol.Chem., 258, 4706–4709.
  • Dakubo, G.D., Parr, R.L., Costello, L.C., Franklin, R.B. & Thayer, R.E. 2006. Altered metabolism and mitochondrial genome in prostate cancer. J.Clin.Pathol., 59, 10–16.
  • Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., Fantin, V.R., Jang, H.G., Jin, S., Keenan, M.C., Marks, K.M., Prins, R.M., Ward, P.S., Yen, K.E., Liau, L.M., Rabinowitz, J.D., Cantley, L.C., Thompson, C.B., Vander Heiden, M.G. & Su, S.M. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 462, 739–744.
  • Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., Fantin, V.R., Jang, H.G., Jin, S., Keenan, M.C., Marks, K.M., Prins, R.M., Ward, P.S., Yen, K.E., Liau, L.M., Rabinowitz, J.D., Cantley, L.C., Thompson, C.B., Vander Heiden, M.G. & Su, S.M. 2010. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 465, 966.
  • Dange, M. & Colman, R.F. 2010. Each conserved active site tyr in the three subunits of human isocitrate dehydrogenase has a different function. J.Biol.Chem., 285, 20520–20525.
  • Datta, A., Merz, J.M. & Spivey, H.O. 1985. Substrate channeling of oxalacetate in solid-state complexes of malate dehydrogenase and citrate synthase. J.Biol.Chem., 260, 15008–15012.
  • DeFronzo, R.A., Bonadonna, R.C. & Ferrannini, E. 1992. Pathogenesis of NIDDM. A balanced overview. Diabetes.Care., 15, 318–368.
  • DeFronzo, R.A., Jacot, E., Jequier, E., Maeder, E., Wahren, J. & Felber, J.P. 1981. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes, 30, 1000–1007.
  • Delaval, E., Perichon, M. & Friguet, B. 2004. Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart. Eur.J.Biochem., 271, 4559–4564.
  • Deng, N., Zhang, J., Zong, C., Wang, Y., Lu, H., Yang, P., Wang, W., Young, G.W., Wang, Y., Korge, P., Lotz, C., Doran, P., Liem, D.A., Apweiler, R., Weiss, J.N., Duan, H. & Ping, P. 2011. Phosphoproteome analysis reveals regulatory sites in major pathways of cardiac mitochondria. Mol.Cell.Proteomics., 10, M110.000117.
  • Denton, R.M. 2009. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim.Biophys.Acta., 1787, 1309–1316.
  • Dolfini, D., Gatta, R. & Mantovani, R. 2012. NF-Y and the transcriptional activation of CCAAT promoters. Crit.Rev.Biochem.Mol.Biol., 47, 29–49.
  • Drewnowski, A. 2009. Obesity, diets, and social inequalities. Nutr.Rev., 67 Suppl 1, S36–S39.
  • Dubbink, H.J., Taal, W., van Marion, R., Kros, J.M., van Heuvel, I., Bromberg, J.E., Zonnenberg, B.A., Zonnenberg, C.B., Postma, T.J., Gijtenbeek, J.M., Boogerd, W., Groenendijk, F.H., Smitt, P.A., Dinjens, W.N. & van den Bent, M.J. 2009. IDH1 mutations in low-grade astrocytomas predict survival but not response to temozolomide. Neurology, 73, 1792–1795.
  • Dulaimi, E., Uzzo, R.G., Greenberg, R.E., Al-Saleem, T. & Cairns, P. 2004. Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin.Cancer Res., 10, 1887–1893.
  • Dumont, M., Ho, D.J., Calingasan, N.Y., Xu, H., Gibson, G. & Beal, M.F. 2009. Mitochondrial dihydrolipoyl succinyltransferase deficiency accelerates amyloid pathology and memory deficit in a transgenic mouse model of amyloid deposition. Free.Radic.Biol.Med., 47, 1019–1027.
  • Dupuy, J., Volbeda, A., Carpentier, P., Darnault, C., Moulis, J.M. & Fontecilla-Camps, J.C. 2006. Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure, 14, 129–139.
  • Edwards, Y.H. & Hopkinson, D.A. 1979. The genetic determination of fumarase isozymes in human tissues. Ann.Hum.Genet,. 42, 303–313.
  • Ehrlich, R.S., Hayman, S., Ramachandran, N. & Colman, R.F. 1981. Re-evaluation of molecular weight of pig heart NAD-specific isocitrate dehydrogenase. J.Biol.Chem., 256, 10560–10564.
  • Elbehti-Green, A., Au, H.C., Mascarello, J.T., Ream-Robinson, D. & Scheffler, I.E. 1998. Characterization of the human SDHC gene encoding of the integral membrane proteins of succinate-quinone oxidoreductase in mitochondria. Gene, 213, 133–140.
  • Elpeleg, O., Miller, C., Hershkovitz, E., Bitner-Glindzicz, M., Bondi-Rubinstein, G., Rahman, S., Pagnamenta, A., Eshhar, S. & Saada, A. 2005. Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am.J.Hum.Genet., 76, 1081–1086.
  • Erlic, Z. & Neumann, H.P. 2009. Familial pheochromocytoma. Hormones (Athens), 8, 29–38.
  • Fahien, L.A., Kmiotek, E.H., MacDonald, M.J., Fibich, B., & Mandic, M. 1988. Regulation of malate dehydrogenase activity by glutamate, citrate, α-Ketoglutarate, and multienzyme interaction. J.Biol.Chem., 263, 10687–10697.
  • Feng, J., Zhu, M., Schaub, M.C., Gehrig, P., Roschitzki, B., Lucchinetti, E. & Zaugg, M. 2008. Phosphoproteome analysis of isoflurane-protected heart mitochondria: phosphorylation of adenine nucleotide translocator-1 on Tyr194 regulates mitochondrial function. Cardiovasc.Res., 80, 20–29.
  • Finley, L.W., Haas, W., Desquiret-Dumas, V., Wallace, D.C., Procaccio, V., Gygi, S.P. & Haigis, M.C. 2011. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS.ONE., 6, e23295.
  • Fox, J.W., Lamperti, E.D., Eksioglu, Y.Z., Hong, S.E., Feng, Y., Graham, D.A., Scheffer, I.E., Dobyns, W.B., Hirsch, B.A., Radtke, R.A., Berkovic, S.F., Huttenlocher, P.R. & Walsh, C.A. 1998. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron, 21, 1315–1325.
  • Fraser, M.E., James, M.N., Bridger, W.A. & Wolodko, W.T. 2000. Phosphorylated and dephosphorylated structures of pig heart, GTP-specific succinyl-CoA synthetase. J.Mol.Biol., 299, 1325–1339.
  • Frederiksen, C.M., Højlund, K., Hansen, L., Oakeley, E.J., Hemmings, B., Abdallah, B.M., Brusgaard, K., Beck-Nielsen, H. & Gaster, M. 2008. Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes. Diabetologia, 51, 2068–2077.
  • Gabriel, J.L., Zervos, P.R. & Plaut, G.W. 1986. Activity of purified NAD-specific isocitrate dehydrogenase at modulator and substrate concentrations approximating conditions in mitochondria. Metab.Clin.Exp., 35, 661–667.
  • Gannon, J., Staunton, L., O’Connell, K., Doran, P. & Ohlendieck, K. 2008. Phosphoproteomic analysis of aged skeletal muscle. Int.J.Mol.Med., 22, 33–42.
  • Gaster, M. 2007a. Insulin resistance and the mitochondrial link. Lessons from cultured human myotubes. Biochim.Biophys.Acta., 1772, 755–765.
  • Gaster, M. 2007b. Metabolic flexibility is conserved in diabetic myotubes. J.Lipid.Res., 48, 207–217.
  • Gaster, M. 2009a. Reduced lipid oxidation in myotubes established from obese and type 2 diabetic subjects. Biochem.Biophys.Res.Commun., 382, 766–770.
  • Gaster, M. 2009b. Reduced TCA flux in diabetic myotubes: A governing influence on the diabetic phenotype? Biochem.Biophys.Res.Commun., 387, 651–655.
  • Gaster, M. 2011. Mitochondrial mass is inversely correlated to complete lipid oxidation in human myotubes. Biochem.Biophys.Res.Commun., 404, 1023–1028.
  • Gaster, M. & Beck-Nielsen, H. 2004. The reduced insulin-mediated glucose oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin–evidence from cultured myotubes. Biochim.Biophys.Acta., 1690, 85–91.
  • Gaster, M. & Beck-Nielsen, H. 2006. Triacylglycerol accumulation is not primarily affected in myotubes established from type 2 diabetic subjects. Biochim.Biophys.Acta., 1761, 100–110.
  • Gaster, M., Beck-Nielsen, H., & Schroder, H.D. 2001a. Proliferation conditions for human satellite cells. The fractional content of satellite cells. APMIS, 109, 726–734.
  • Gaster, M., Brusgaard, K., Handberg, A., Højlund, K., Wojtaszewski, J.F. & Beck-Nielsen, H. 2004a. The primary defect in glycogen synthase activity is not based on increased glycogen synthase kinase-3α activity in diabetic myotubes. Biochem.Biophys.Res.Commun., 319, 1235–1240.
  • Gaster, M., Kristensen, S.R., Beck-Nielsen, H., & Schroder, H.D. 2001b. A cellular model system of differentiated human myotubes. APMIS, 109, 735–744.
  • Gaster, M., Petersen, I., Højlund, K., Poulsen, P. & Beck-Nielsen, H. 2002. The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes, 51, 921–927.
  • Gaster, M., Rustan, A.C., Aas, V. & Beck-Nielsen, H. 2004b. Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes. Diabetes, 53, 542–548.
  • Gaster, M., Schrøder, H.D., Handberg, A. & Beck-Nielsen, H. 2001. The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure. Biochim.Biophys.Acta., 1537, 211–221.
  • Ghezzi, D., Goffrini, P., Uziel, G., Horvath, R., Klopstock, T., Lochmüller, H., D’Adamo, P., Gasparini, P., Strom, T.M., Prokisch, H., Invernizzi, F., Ferrero, I. & Zeviani, M. 2009. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat.Genet., 41, 654–656.
  • Gibala, M.J., MacLean, D.A., Graham, T.E. & Saltin, B. 1998. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am.J.Physiol., 275, E235–E242.
  • González-Cabo, P., Vázquez-Manrique, R.P., García-Gimeno, M.A., Sanz, P. & Palau, F. 2005. Frataxin interacts functionally with mitochondrial electron transport chain proteins. Hum.Mol.Genet., 14, 2091–2098.
  • Gottlieb, E. & Tomlinson, I.P. 2005. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat.Rev.Cancer., 5, 857–866.
  • Gray, M.W., Burger, G. & Lang, B.F. 2001. The origin and early evolution of mitochondria. Genome.Biol., 2, REVIEWS1018.
  • Gruer, M.J., Artymiuk, P.J. & Guest, J.R. 1997. The aconitase family: three structural variations on a common theme. Trends.Biochem.Sci., 22, 3–6.
  • Guillon, B., Bulteau, A.L., Wattenhofer-Donzé, M., Schmucker, S., Friguet, B., Puccio, H., Drapier, J.C. & Bouton, C. 2009. Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins. FEBS.J., 276, 1036–1047.
  • Guo, C., Pirozzi, C.J., Lopez, G.Y., & Yan, H. 2011. Isocitrate dehydrogenase mutations in gliomas, mechanisms, biomarkers and therapeutic target. Curr.Opin.Neurol., 24, 648–652.
  • Habelhah, H., Laine, A., Erdjument-Bromage, H., Tempst, P., Gershwin, M.E., Bowtell, D.D. & Ronai, Z. 2004. Regulation of 2-oxoglutarate (α-Ketoglutarate) dehydrogenase stability by the RING finger ubiquitin ligase Siah. J.Biol.Chem., 279, 53782–53788.
  • Haggie, P.M. & Verkman, A.S. 2002. Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex. J.Biol.Chem., 277, 40782–40788.
  • Hagopian, K., Ramsey, J.J. & Weindruch, R. 2004. Krebs cycle enzymes from livers of old mice are differentially regulated by caloric restriction. Exp.Gerontol., 39, 1145–1154.
  • Han, D., Canali, R., Garcia, J., Aguilera, R., Gallaher, T.K., & Cadenas, E. 2005. Sites and mechanisms of aconitase inactivation by peroxynitrite, modulation by citrate and glutathione. Biochemistry, 44, 11986–11996.
  • Hansen, L., Gaster, M., Oakeley, E.J., Brusgaard, K., Damsgaard Nielsen, E.M., Beck-Nielsen, H., Pedersen, O. & Hemmings, B.A. 2004. Expression profiling of insulin action in human myotubes: induction of inflammatory and pro-angiogenic pathways in relationship with glycogen synthesis and type 2 diabetes. Biochem.Biophys.Res.Commun., 323, 685–695.
  • Hao, H.X., Khalimonchuk, O., Schraders, M., Dephoure, N., Bayley, J.P., Kunst, H., Devilee, P., Cremers, C.W., Schiffman, J.D., Bentz, B.G., Gygi, S.P., Winge, D.R., Kremer, H. & Rutter, J. 2009. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science, 325, 1139–1142.
  • Hartong, D.T., Dange, M., McGee, T.L., Berson, E.L., Dryja, T.P. & Colman, R.F. 2008. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat.Genet., 40, 1230–1234.
  • Helge, J.W., Stallknecht, B., Richter, E.A., Galbo, H. & Kiens, B. 2007. Muscle metabolism during graded quadriceps exercise in man. J.Physiol (Lond), 581, 1247–1258.
  • Hirawake, H., Taniwaki, M., Tamura, A., Amino, H., Tomitsuka, E. & Kita, K. 1999. Characterization of the human SDHD gene encoding the small subunit of cytochrome b (cybS) in mitochondrial succinate-ubiquinone oxidoreductase. Biochim.Biophys.Acta., 1412, 295–300.
  • Hoek, J.B. & Rydström, J. 1988. Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem.J., 254, 1–10.
  • Hopper, R.K., Carroll, S., Aponte, A.M., Johnson, D.T., French, S., Shen, R.F., Witzmann, F.A., Harris, R.A. & Balaban, R.S. 2006. Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry, 45, 2524–2536.
  • Hüttemann, M., Lee, I., Samavati, L., Yu, H. & Doan, J.W. 2007. Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim.Biophys.Acta., 1773, 1701–1720.
  • Huynen, M.A., Dandekar, T. & Bork, P. 1999. Variation and evolution of the citric-acid cycle: a genomic perspective. Trends.Microbiol., 7, 281–291.
  • Inzucchi, S.E. & Sherwin, R.S. 2005. The prevention of type 2 diabetes mellitus. Endocrinol.Metab.Clin.North.Am., 34, 199–219, viii.
  • Janero, D.R. & Hreniuk, D. 1996. Suppression of TCA cycle activity in the cardiac muscle cell by hydroperoxide-induced oxidant stress. Am.J.Physiol., 270, C1735–C1742.
  • Janssen, A.J., Trijbels, F.J., Sengers, R.C., Wintjes, L.T., Ruitenbeek, W., Smeitink, J.A., Morava, E., van Engelen, B.G., van den Heuvel, L.P. & Rodenburg, R.J. 2006. Measurement of the energy-generating capacity of human muscle mitochondria: diagnostic procedure and application to human pathology. Clin.Chem., 52, 860–871.
  • Jenkins, T.M. & Weitzman, P.D. 1986. Distinct physiological roles of animal succinate thiokinases. Association of guanine nucleotide-linked succinate thiokinase with ketone body utilization. FEBS Lett., 205, 215–218.
  • Jenkins, T.M. & Weitzman, P.D. 1988. Physiological roles of animal succinate thiokinases. Specific association of the guanine nucleotide-linked enzyme with haem biosynthesis. FEBS Lett., 230, 6–8.
  • Jeremy M. Berg, John, L. Tymoczko, & Lubert Stryer. Biochemistry. [6th Edition edition (14 July 2006)]. 2011. W. H. Freeman.
  • Jezek, P. & Plecitá-Hlavatá, L. 2009. Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia. Int.J.Biochem.Cell.Biol., 41, 1790–1804.
  • Joh, T., Takeshima, H., Tsuzuki, T., Setoyama, C., Shimada, K., Tanase, S., Kuramitsu, S., Kagamiyama, H. & Morino, Y. 1987. Cloning and sequence analysis of cDNAs encoding mammalian cytosolic malate dehydrogenase. Comparison of the amino acid sequences of mammalian and bacterial malate dehydrogenase. J.Biol.Chem., 262, 15127–15131.
  • Johanning, G.L., Morris, J.I., Madhusudhan, K.T., Samols, D. & Patel, M.S. 1992. Characterization of the transcriptional regulatory region of the human dihydrolipoamide dehydrogenase gene. Proc.Natl.Acad.Sci.USA., 89, 10964–10968.
  • Johnson, J.D., Mehus, J.G., Tews, K., Milavetz, B.I. & Lambeth, D.O. 1998a. Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes. J.Biol.Chem., 273, 27580–27586.
  • Johnson, J.D., Muhonen, W.W. & Lambeth, D.O. 1998b. Characterization of the ATP- and GTP-specific succinyl-CoA synthetases in pigeon. The enzymes incorporate the same α-subunit. J.Biol.Chem., 273, 27573–27579.
  • Johnson, K.R., Gagnon, L.H., Longo-Guess, C. & Kane, K.L. 2011. Association of a citrate synthase missense mutation with age-related hearing loss in A/J mice. Neurobiol.Aging.
  • Juang, H.H., Hsieh, M.L. & Tsui, K.H. 2004. Testosterone modulates mitochondrial aconitase in the full-length human androgen receptor-transfected PC-3 prostatic carcinoma cells. J.Mol.Endocrinol., 33, 121–132.
  • Kaufman, S., Gilvarg, C., Cori, O., & Ochoa, S. 1953. Enzymatic oxidation of α-Ketoglutarate and coupled phosphorylation. J.Biol.Chem., 203, 869–888.
  • Keruchenko, J.S., Keruchenko, I.D., Gladilin, K.L., Zaitsev, V.N. & Chirgadze, N.Y. 1992. Purification, characterization and preliminary X-ray study of fumarase from Saccharomyces cerevisiae. Biochim.Biophys.Acta., 1122, 85–92.
  • Kil, I.S. & Park, J.W. 2005. Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. J.Biol.Chem., 280, 10846–10854.
  • Kim, S.C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N.V., White, M., Yang, X.J. & Zhao, Y. 2006. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol.Cell., 23, 607–618.
  • Kim, S.Y., Marekov, L., Bubber, P., Browne, S.E., Stavrovskaya, I., Lee, J., Steinert, P.M., Blass, J.P., Beal, M.F., Gibson, G.E. & Cooper, A.J. 2005. Mitochondrial aconitase is a transglutaminase 2 substrate: transglutamination is a probable mechanism contributing to high-molecular-weight aggregates of aconitase and loss of aconitase activity in Huntington disease brain. Neurochem.Res., 30, 1245–1255.
  • Kim, Y.O., Koh, H.J., Kim, S.H., Jo, S.H., Huh, J.W., Jeong, K.S., Lee, I.J., Song, B.J. & Huh, T.L. 1999. Identification and functional characterization of a novel, tissue-specific NAD(+)-dependent isocitrate dehydrogenase β subunit isoform. J.Biol.Chem., 274, 36866–36875.
  • King, A., Selak, M.A. & Gottlieb, E. 2006. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene, 25, 4675–4682.
  • King, H., Aubert, R.E., & Herman, W.H. 1998. Global burden of diabetes, 1995–2025, prevalence, numerical estimates, and projections. Diabetes Care, 21, 1414–1431.
  • Kirsch, M., Lehnig, M., Korth, H.G., Sustmann, R. & de Groot, H. 2001. Inhibition of peroxynitrite-induced nitration of tyrosine by glutathione in the presence of carbon dioxide through both radical repair and peroxynitrate formation. Chemistry, 7, 3313–3320.
  • Kniewald, J. & Mildner, P. 1975. Thermochemistry of fumarase-inhibitor binding. FEBS Lett., 53, 225–228.
  • Koh, H.J., Lee, S.M., Son, B.G., Lee, S.H., Ryoo, Z.Y., Chang, K.T., Park, J.W., Park, D.C., Song, B.J., Veech, R.L., Song, H. & Huh, T.L. 2004. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J.Biol.Chem., 279, 39968–39974.
  • Koike, K. 1998. Cloning, structure, chromosomal localization and promoter analysis of human 2-oxoglutarate dehydrogenase gene. Biochim.Biophys.Acta., 1385, 373–384.
  • Koike, K. & Matsuo, S. 1997. Functional characterization of the 5′-flanking region of the gene encoding human 2-oxoglutarate dehydrogenase. Gene, 186, 45–53.
  • Koike, K., Suematsu, T. & Ehara, M. 2000. Cloning, overexpression and mutagenesis of cDNA encoding dihydrolipoamide succinyltransferase component of the porcine 2-oxoglutarate dehydrogenase complex. Eur.J.Biochem., 267, 3005–3016.
  • Koivunen, P., Hirsila, M., Remes, A.M., Hassinen, I.E., Kivirikko, K.I., & Myllyharju, J. 2007. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates, possible links between cell metabolism and stabilization of HIF. J.Biol.Chem., 282, 4524–4532.
  • Kranendijk, M., Struys, E.A., van Schaftingen, E., Gibson, K.M., Kanhai, W.A., van der Knaap, M.S., Amiel, J., Buist, N.R., Das, A.M., de Klerk, J.B., Feigenbaum, A.S., Grange, D.K., Hofstede, F.C., Holme, E., Kirk, E.P., Korman, S.H., Morava, E., Morris, A., Smeitink, J., Sukhai, R.N., Vallance, H., Jakobs, C. & Salomons, G.S. 2010. IDH2 mutations in patients with D-2-hydroxyglutaric aciduria. Science, 330, 336.
  • Krebs H.A. The citric acid cycle. 399–410. 1953. http://www.nobelprizeorg/nobel_prizes/medicine/laureates/1953/krebs-lecturepdf
  • Krebs, H.A. & Johnson, W.A. 1937. Metabolism of ketonic acids in animal tissues. Biochem.J., 31, 645–660.
  • Lambeth, D.O., Tews, K.N., Adkins, S., Frohlich, D. & Milavetz, B.I. 2004. Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues. J.Biol.Chem., 279, 36621–36624.
  • Lee, J.H., Yang, E.S. & Park, J.W. 2003. Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite. Implications for cytotoxicity and alcohol-induced liver injury. J.Biol.Chem., 278, 51360–51371.
  • Lee, S.M., Huh, T.L. & Park, J.W. 2001. Inactivation of NADP(+)-dependent isocitrate dehydrogenase by reactive oxygen species. Biochimie, 83, 1057–1065.
  • Lee, S.M., Kim J.H., Cho, E.J. & Youn, H.D. 2009. A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death Differ., 16, 738–748. Epub 2009 Feb 20.
  • Lee, S.M., Koh, H.J., Park, D.C., Song, B.J., Huh, T.L. & Park, J.W. 2002. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free.Radic.Biol.Med., 32, 1185–1196.
  • Lehtonen, H.J., Ylisaukko-Oja, S.K., Kiuru, M., Karhu, A., Lehtonen, R., Vanharanta, S., Jalanko, A., Aaltonen, L.A. & Launonen, V. 2007. Stress-induced expression of a novel variant of human fumarate hydratase (FH). Gene.Expr., 14, 59–69.
  • Levitas, A., Muhammad, E., Harel, G., Saada, A., Caspi, V.C., Manor, E., Beck, J.C., Sheffield, V. & Parvari, R. 2010. Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. Eur.J.Hum.Genet., 18, 1160–1165.
  • Lin, G., Brownsey, R.W. & MacLeod, K.M. 2009a. Regulation of mitochondrial aconitase by phosphorylation in diabetic rat heart. Cell.Mol.Life.Sci., 66, 919–932.
  • Lin, G., Brownsey, R.W., & MacLeod, K.M. 2009b. Regulation of mitochondrial aconitase by phosphorylation in diabetic rat heart. Cell.Mol.Life.Sci., 66, 919–932.
  • Liu, T., Lu, B., Lee, I., Ondrovicova, G., Kutejova, E., & Suzuki, C.K. 2004. DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J.Biol.Chem., 279, 13902–13910.
  • Liu, T.C., Kim, H., Arizmendi, C., Kitano, A. & Patel, M.S. 1993. Identification of two missense mutations in a dihydrolipoamide dehydrogenase-deficient patient. Proc.Natl.Acad.Sci.USA., 90, 5186–5190.
  • Liu, Z. & Butow, R.A. 1999. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol.Cell.Biol., 19, 6720–6728.
  • Lo, A.S., Liew, C.T., Ngai, S.M., Tsui, S.K., Fung, K.P., Lee, C.Y. & Waye, M.M. 2005. Developmental regulation and cellular distribution of human cytosolic malate dehydrogenase (MDH1). J.Cell.Biochem., 94, 763–773.
  • Lombard, D.B., Tishkoff, D.X. & Bao, J. 2011. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. Handb.Exp.Pharmacol., 206, 163–188.
  • Luo, H., Shan, X. & Wu, J. 1996. Expression of human mitochondrial NADP-dependent isocitrate dehydrogenase during lymphocyte activation. J.Cell.Biochem., 60, 495–507.
  • Lyubarev, A.E. & Kurganov, B.I. 1989. Supramolecular organization of tricarboxylic acid cycle enzymes. BioSystems, 22, 91–102.
  • Maechler, P. & Wollheim, C.B. 2001. Mitochondrial function in normal and diabetic β-cells. Nature, 414, 807–812.
  • Manchester, K.L. 1998. Albert Szent-Györgyi and the unravelling of biological oxidation. Trends.Biochem.Sci., 23, 37–40.
  • Mardis, E.R., Ding, L., Dooling, D.J., Larson, D.E., McLellan, M.D., Chen, K., Koboldt, D.C., Fulton, R.S., Delehaunty, K.D., McGrath, S.D., Fulton, L.A., Locke, D.P., Magrini, V.J., Abbott, R.M., Vickery, T.L., Reed, J.S., Robinson, J.S., Wylie, T., Smith, S.M., Carmichael, L., Eldred, J.M., Harris, C.C., Walker, J., Peck, J.B., Du, F., Dukes, A.F., Sanderson, G.E., Brummett, A.M., Clark, E., McMichael, J.F., Meyer, R.J., Schindler, J.K., Pohl, C.S., Wallis, J.W., Shi, X., Lin, L., Schmidt, H., Tang, Y., Haipek, C., Wiechert, M.E., Ivy, J.V., Kalicki, J., Elliott, G., Ries, R.E., Payton, J.E., Westervelt, P., Tomasson, M.H., Watson, M.A., Baty, J., Heath, S., Shannon, W.D., Nagarajan, R., Link, D.C., Walter, M.J., Graubert, T.A., DiPersio, J.F., Wilson, R.K. & Ley, T.J. 2009. Recurring mutations found by sequencing an acute myeloid leukemia genome. N.Engl.J.Med., 361, 1058–1066.
  • Martin, T.P., Irving, R.M. & Maher, E.R. 2007. The genetics of paragangliomas: a review. Clin.Otolaryngol., 32, 7–11.
  • Mas, M.T. & Colman, R.F. 1984. Phosphorus-31 nuclear magnetic resonance studies of the binding of nucleotides to NADP+-specific isocitrate dehydrogenase. Biochemistry, 23, 1675–1683.
  • Miller, C., Wang, L., Ostergaard, E., Dan, P. & Saada, A. 2011. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion. Biochim.Biophys.Acta., 1812, 625–629.
  • Minet, A.D. & Gaster, M. 2010. ATP synthesis is impaired in isolated mitochondria from myotubes established from type 2 diabetic subjects. Biochem.Biophys.Res.Commun., 402, 70–74.
  • Minet, A.D. & Gaster, M. 2011a. The dynamic equilibrium between ATP synthesis and ATP consumption is lower in isolated mitochondria from myotubes established from type 2 diabetic subjects compared to lean control. Biochem.Biophys.Res.Commun., 409, 591–595.
  • Minet, A.D. & Gaster, M. 2011b. Hydrogen peroxide production is not primarily increased in human myotubes established from type 2 diabetic subjects. J.Clin.Endocrinol.Metab., 96, E1486–E1490.
  • Mirel, D.B., Marder, K., Graziano, J., Freyer, G., Zhao, Q., Mayeux, R. & Wilhelmsen, K.C. 1998. Characterization of the human mitochondrial aconitase gene (ACO2). Gene, 213, 205–218.
  • Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., Houstis, N., Daly, M.J., Patterson, N., Mesirov, J.P., Golub, T.R., Tamayo, P., Spiegelman, B., Lander, E.S., Hirschhorn, J.N., Altshuler, D. & Groop, L.C. 2003. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat.Genet., 34, 267–273.
  • Morava, E., Steuerwald, U., Carrozzo, R., Kluijtmans, L.A., Joensen, F., Santer, R., Dionisi-Vici, C. & Wevers, R.A. 2009. Dystonia and deafness due to SUCLA2 defect; Clinical course and biochemical markers in 16 children. Mitochondrion, 9, 438–442.
  • Morgunov, I. & Srere, P.A. 1998. Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate. J.Biol.Chem., 273, 29540–29544.
  • Nakamura, T., Nakamura, H., Hoshino, T., Ueda, S., Wada, H. & Yodoi, J. 2005. Redox regulation of lung inflammation by thioredoxin. Antioxid.Redox.Signal., 7, 60–71.
  • Nichols, B.J., Rigoulet, M. & Denton, R.M. 1994. Comparison of the effects of Ca2+, adenine nucleotides and pH on the kinetic properties of mitochondrial NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase from the yeast Saccharomyces cerevisiae and rat heart. Biochem.J., 303 (Pt 2), 461–465.
  • Niemann, S. & Müller, U. 2000. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat.Genet., 26, 268–270.
  • Nulton-Persson, A.C., Starke, D.W., Mieyal, J.J. & Szweda, L.I. 2003. Reversible inactivation of α-Ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry, 42, 4235–4242.
  • Onyango, P., Celic, I., McCaffery, J.M., Boeke, J.D. & Feinberg, A.P. 2002. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc.Natl.Acad.Sci.USA., 99, 13653–13658.
  • Ortenblad, N., Mogensen, M., Petersen, I., Højlund, K., Levin, K., Sahlin, K., Beck-Nielsen, H. & Gaster, M. 2005. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim.Biophys.Acta., 1741, 206–214.
  • Ostergaard, E. 2008. Disorders caused by deficiency of succinate-CoA ligase. J.Inherit.Metab.Dis.
  • Ostergaard, E., Christensen, E., Kristensen, E., Mogensen, B., Duno, M., Shoubridge, E.A. & Wibrand, F. 2007a. Deficiency of the α subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am.J.Hum.Genet., 81, 383–387.
  • Ostergaard, E., Hansen, F.J., Sorensen, N., Duno, M., Vissing, J., Larsen, P.L., Faeroe, O., Thorgrimsson, S., Wibrand, F., Christensen, E. & Schwartz, M. 2007b. Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain, 130, 853–861.
  • Ostergaard, E., Schwartz, M., Batbayli, M., Christensen, E., Hjalmarson, O., Kollberg, G. & Holme, E. 2010. A novel missense mutation in SUCLG1 associated with mitochondrial DNA depletion, encephalomyopathic form, with methylmalonic aciduria. Eur.J.Pediatr., 169, 201–205.
  • Parsons, D.W., Jones, S., Zhang, X., Lin, J.C., Leary, R.J., Angenendt, P., Mankoo, P., Carter, H., Siu, I.M., Gallia, G.L., Olivi, A., McLendon, R., Rasheed, B.A., Keir, S., Nikolskaya, T., Nikolsky, Y., Busam, D.A., Tekleab, H., Diaz, L.A. Jr, Hartigan, J., Smith, D.R., Strausberg, R.L., Marie, S.K., Shinjo, S.M., Yan, H., Riggins, G.J., Bigner, D.D., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V.E. & Kinzler, K.W. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science, 321, 1807–1812.
  • Patti, M.E., Butte, A.J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., Miyazaki, Y., Kohane, I., Costello, M., Saccone, R., Landaker, E.J., Goldfine, A.B., Mun, E., DeFronzo, R., Finlayson, J., Kahn, C.R. & Mandarino, L.J. 2003. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc.Natl.Acad.Sci.USA., 100, 8466–8471.
  • Penner, P.E. & Cohen, L.H. 1969. Effects of adenosine triphosphate and magnesium ions on the fumarase reaction. J.Biol.Chem., 244, 1070–1075.
  • Phillips, D., Aponte, A.M., French, S.A., Chess, D.J. & Balaban, R.S. 2009. Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism. Biochemistry, 48, 7140–7149.
  • Piantadosi, C.A. & Suliman, H.B. 2008. Transcriptional Regulation of SDHa flavoprotein by nuclear respiratory factor-1 prevents pseudo-hypoxia in aerobic cardiac cells. J.Biol.Chem., 283, 10967–10977.
  • Pithukpakorn, M. 2005. Disorders of pyruvate metabolism and the tricarboxylic acid cycle. Mol.Genet.Metab., 85, 243–246.
  • Plaut, G.W., Cook, M. & Aogaichi, T. 1983. The subcellular location of isozymes of NADP-isocitrate dehydrogenase in tissues from pig, ox and rat. Biochim.Biophys.Acta., 760, 300–308.
  • Pollard, P.J., Brière, J.J., Alam, N.A., Barwell, J., Barclay, E., Wortham, N.C., Hunt, T., Mitchell, M., Olpin, S., Moat, S.J., Hargreaves, I.P., Heales, S.J., Chung, Y.L., Griffiths, J.R., Dalgleish, A., McGrath, J.A., Gleeson, M.J., Hodgson, S.V., Poulsom, R., Rustin, P. & Tomlinson, I.P. 2005. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum.Mol.Genet., 14, 2231–2239.
  • Pollard, P.J., Spencer-Dene, B., Shukla, D., Howarth, K., Nye, E., El-Bahrawy, M., Deheragoda, M., Joannou, M., McDonald, S., Martin, A., Igarashi, P., Varsani-Brown, S., Rosewell, I., Poulsom, R., Maxwell, P., Stamp, G.W. & Tomlinson, I.P. 2007. Targeted inactivation of fh1 causes proliferative renal cyst development and activation of the hypoxia pathway. Cancer.Cell., 11, 311–319.
  • Porpáczy, Z., Sümegi, B. & Alkonyi, I. 1983. Association between the α-Ketoglutarate dehydrogenase complex and succinate thiokinase. Biochim.Biophys.Acta., 749, 172–179.
  • Porpaczy, Z., Sumegi, B. & Alkonyi, I. 1987. Interaction between NAD-dependent isocitrate dehydrogenase, α-Ketoglutarate dehydrogenase complex, and NADH:ubiquinone oxidoreductase. J.Biol.Chem., 262, 9509–9514.
  • Raimundo, N., Ahtinen, J., Fumic, K., Baric, I., Remes, A.M., Renkonen, R., Lapatto, R. & Suomalainen, A. 2008. Differential metabolic consequences of fumarate hydratase and respiratory chain defects. Biochim.Biophys.Acta., 1782, 287–294.
  • Raimundo, N., Baysal, B.E. & Shadel, G.S. 2011. Revisiting the TCA cycle: signaling to tumor formation. Trends.Mol.Med., 17, 641–649.
  • Raimundo, N., Vanharanta, S., Aaltonen, L.A., Hovatta, I. & Suomalainen, A. 2009. Downregulation of SRF-FOS-JUNB pathway in fumarate hydratase deficiency and in uterine leiomyomas. Oncogene, 28, 1261–1273.
  • Reed, L.J. & Hackert, M.L. 1990. Structure-function relationships in dihydrolipoamide acyltransferases. J.Biol.Chem., 265, 8971–8974.
  • Regev-Rudzki, N., Yogev, O. & Pines, O. 2008. The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization. J.Cell.Sci., 121, 2423–2431.
  • Reitman, Z.J., Jin, G., Karoly, E.D., Spasojevic, I., Yang, J., Kinzler, K.W., He, Y., Bigner, D.D., Vogelstein, B. & Yan, H. 2011. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc.Natl.Acad.Sci.USA., 108, 3270–3275.
  • Reyns, C., Léonis, J. & Schlusselberg, J. 1975. Chicken fumarase. I. Purification and characterization. Biochimie, 57, 123–129.
  • Rivera, H., Merinero, B., Martinez-Pardo, M., Arroyo, I., Ruiz-Sala, P., Bornstein, B., Serra-Suhe, C., Gallardo, E., Marti, R., Moran, M.J., Ugalde, C., Perez-Jurado, L.A., Andreu, A.L., Garesse, R., Ugarte, M., Arenas, J. & Martin, M.A. 2010. Marked mitochondrial DNA depletion associated with a novel SUCLG1 gene mutation resulting in lethal neonatal acidosis, multi-organ failure, and interrupted aortic arch. Mitochondrion, 10, 362–368.
  • Robinson, B.H. 2006. Lactic acidemia and mitochondrial disease. Mol.Genet.Metab., 89, 3–13.
  • Robinson, J.B. Jr & Srere, P.A. 1985. Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. J.Biol.Chem., 260, 10800–10805.
  • Roderick, S.L. & Banaszak, L.J. 1986. The three-dimensional structure of porcine heart mitochondrial malate dehydrogenase at 3.0-A resolution. J.Biol.Chem., 261, 9461–9464.
  • Ronnebaum, S.M., Ilkayeva, O., Burgess, S.C., Joseph, J.W., Lu, D., Stevens, R.D., Becker, T.C., Sherry, A.D., Newgard, C.B. & Jensen, M.V. 2006. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J.Biol.Chem., 281, 30593–30602.
  • Rose, I.A. 1997. Restructuring the active site of fumarase for the fumarate to malate reaction. Biochemistry, 36, 12346–12354.
  • Rose, I.A. & Weaver, T.M. 2004. The role of the allosteric B site in the fumarase reaction. Proc.Natl.Acad.Sci.USA., 101, 3393–3397.
  • Rothermel, B.A., Thornton, J.L. & Butow, R.A. 1997. Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains. J.Biol.Chem., 272, 19801–19807.
  • Rouzier, C., Le Guédard-Méreuze, S., Fragaki, K., Serre, V., Miro, J., Tuffery-Giraud, S., Chaussenot, A., Bannwarth, S., Caruba, C., Ostergaard, E., Pellissier, J.F., Richelme, C., Espil, C., Chabrol, B. & Paquis-Flucklinger, V. 2010. The severity of phenotype linked to SUCLG1 mutations could be correlated with residual amount of SUCLG1 protein. J. Med. Genet., 47, 670–676.
  • Rustin, P., Bourgeron, T., Parfait, B., Chretien, D., Munnich, A. & Rötig, A. 1997. Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human. Biochim.Biophys.Acta., 1361, 185–197.
  • Rutter, G.A. & Denton, R.M. 1988. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem.J., 252, 181–189.
  • Salvi, M., Morrice, N.A., Brunati, A.M. & Toninello, A. 2007. Identification of the flavoprotein of succinate dehydrogenase and aconitase as in vitro mitochondrial substrates of Fgr tyrosine kinase. FEBS Lett., 581, 5579–5585.
  • Scarpulla, R.C. 2008. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann.N.Y.Acad.Sci., 1147, 321–334.
  • Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C.F. & Steegborn, C. 2008. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J.Mol.Biol., 382, 790–801.
  • Schnittger, S., Haferlach, C., Ulke, M., Alpermann, T., Kern, W. & Haferlach, T. 2010. IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood, 116, 5486–5496.
  • Schrauwen, P. & Hesselink, M.K. 2008. Reduced tricarboxylic acid cycle flux in type 2 diabetes mellitus? Diabetologia, 51, 1694–1697.
  • Shepherd, D. & Garland, P.B. 1969. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem.J., 114, 597–610.
  • Sheu, K.F. & Blass, J.P. 1999. The α-Ketoglutarate dehydrogenase complex. Ann.N.Y.Acad.Sci., 893, 61–78.
  • Shi, Q. & Gibson, G.E. 2011. Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. J.Neurochem., 118, 440–448. doi: 10.1111/j.1471- 4159.2011.07333.x. Epub 2011 Jun 24.
  • Singh, B. & Gupta, R.S. 2006. Mitochondrial import of human and yeast fumarase in live mammalian cells: retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence. Biochem.Biophys.Res.Commun., 346, 911–918. Epub 2006 Jun 9.
  • Srere, P.A. 1985. The metabolon. Trends.Biochem.Sci., 10, 109–110.
  • Srere, P.A. 1980. The infrastructure of the mitochondrial matrix. Trends.BiochemSci., 5, 120–121.
  • Srere, P.A. 1987. Complexes of sequential metabolic enzymes. Annu.Rev.Biochem., 56, 89–124.
  • Srere, P.A., Sumegi, B. & Sherry, A.D. 1987. Organizational aspects of the citric acid cycle. Biochem.Soc.Symp., 54, 173–178.
  • Srirangalingam, U., Khoo, B., Walker, L., MacDonald, F., Skelly, R.H., George, E., Spooner, D., Johnston, L.B., Monson, J.P., Grossman, A.B., Drake, W.M., Akker, S.A., Pollard, P.J., Plowman, N., Avril, N., Berney, D.M., Burrin, J.M., Reznek, R.H., Kumar, V.K., Maher, E.R. & Chew, S.L. 2009. Contrasting clinical manifestations of SDHB and VHL associated chromaffin tumours. Endocr.Relat.Cancer., 16, 515–525.
  • Sudarshan, S., Sourbier, C., Kong, H.S., Block, K., Valera Romero, V.A., Yang, Y., Galindo, C., Mollapour, M., Scroggins, B., Goode, N., Lee, M.J., Gourlay, C.W., Trepel, J., Linehan, W.M. & Neckers, L. 2009. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1α stabilization by glucose-dependent generation of reactive oxygen species. Mol.Cell.Biol., 29, 4080–4090.
  • Sümegi, B., Gyócsi, L. & Alkonyi, I. 1980. Interaction between the pyruvate dehydrogenase complex and citrate synthase. Biochim.Biophys.Acta., 616, 158–166.
  • Sumegi, B., Sherry, A.D. & Malloy, C.R. 1990. Channeling of TCA cycle intermediates in cultured Saccharomyces cerevisiae. Biochemistry, 29, 9106–9110.
  • Sumegi, B. & Srere, P.A. 1984. Complex I binds several mitochondrial NAD-coupled dehydrogenases. J.Biol.Chem., 259, 15040–15045.
  • Suzuki, K., Adachi, W., Yamada, N., Tsunoda, M., Koike, K., Koike, M., Sekiguchi, T. & Takénaka, A. 2002. Crystallization and preliminary X-ray analysis of the full-size cubic core of pig 2-oxoglutarate dehydrogenase complex. Acta.Crystallogr.D.Biol.Crystallogr., 58, 833–835.
  • Suzuki, T., Yoshida, T. & Tuboi, S. 1992. Evidence that rat liver mitochondrial and cytosolic fumarases are synthesized from one species of mRNA by alternative translational initiation at two in-phase AUG codons. Eur.J.Biochem., 207, 767–772.
  • Talbot, D.A. & Brand, M.D. 2005. Uncoupling protein 3 protects aconitase against inactivation in isolated skeletal muscle mitochondria. Biochim.Biophys.Acta., 1709, 150–156.
  • Taylor, A.B., Hu, G., Hart, P.J. & McAlister-Henn, L. 2008. Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase. J.Biol.Chem., 283, 10872–10880.
  • Thingholm, T.E., Bak, S., Beck-Nielsen, H., Jensen, O.N., & Gaster, M. 2011. Characterization of human myotubes from type 2 diabetic and non-diabetic subjects using complementary quantitative mass spectrometric methods. Mol.Cell.Proteomics.
  • Tomitsuka, E., Kita, K. & Esumi, H. 2009. Regulation of succinate-ubiquinone reductase and fumarate reductase activities in human complex II by phosphorylation of its flavoprotein subunit. Proc.Jpn.Acad,.Ser.B,.Phys.Biol.Sci., 85, 258–265.
  • Tomlinson, I.P., Alam, N.A., Rowan, A.J., Barclay, E., Jaeger, E.E., Kelsell, D., Leigh, I., Gorman, P., Lamlum, H., Rahman, S., Roylance, R.R., Olpin, S., Bevan, S., Barker, K., Hearle, N., Houlston, R.S., Kiuru, M., Lehtonen, R., Karhu, A., Vilkki, S., Laiho, P., Eklund, C., Vierimaa, O., Aittomäki, K., Hietala, M., Sistonen, P., Paetau, A., Salovaara, R., Herva, R., Launonen, V. & Aaltonen, L.A.; Multiple Leiomyoma Consortium. 2002. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat.Genet., 30, 406–410.
  • Tsui, K.H., Chang, P.L. & Juang, H.H. 2006. Zinc blocks gene expression of mitochondrial aconitase in human prostatic carcinoma cells. Int.J.Cancer., 118, 609–615.
  • Tsui, K.H., Feng, T.H., Lin, Y.F., Chang, P.L. & Juang, H.H. 2011. p53 downregulates the gene expression of mitochondrial aconitase in human prostate carcinoma cells. Prostate, 71, 62–70.
  • Tyiska R.L., Williams J.S., Brent, L.G., Hudson, A.P., Clark, B.J., Robinson, J.B. Jr., & Srere, P.A. Interactions of Matrix Enzyme Activities with Mitochondrial Inner Membranes. Welch, J. R. and Clegg J. S. eds. THE ORGANIZATION OF CELL METABOLISM. [127] 177–189. 1986. NATO Series A, Life Science, Plenum Press, New York.
  • Tyler D. The Mitochondrion in Health and Diseases. 1992. New York, VCH Publishers, Inc.
  • van der Giezen, M. & Tovar, J. 2005. Degenerate mitochondria. EMBO Rep., 6, 525–530.
  • Volz, K. 2008. The functional duality of iron regulatory protein 1. Curr.Opin.Struct.Biol., 18, 106–111.
  • Wallander, M.L., Leibold, E.A. & Eisenstein, R.S. 2006. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim.Biophys.Acta., 1763, 668–689.
  • Wang, H., Antinozzi, P.A., Hagenfeldt, K.A., Maechler, P. & Wollheim, C.B. 2000. Molecular targets of a human HNF1 α mutation responsible for pancreatic β-cell dysfunction. EMBO J., 19, 4257–4264.
  • Wang, Y. & Bogenhagen, D.F. 2006. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J.Biol.Chem., 281, 25791–25802.
  • Weitzman, P.D., Jenkins, T., Else, A.J. & Holt, R.A. 1986. Occurrence of two distinct succinate thiokinases in animal tissues. FEBS Lett, 199, 57–60.
  • Wensaas, A.J., Rustan, A.C., Just, M., Berge, R.K., Drevon, C.A. & Gaster, M. 2009. Fatty acid incubation of myotubes from humans with type 2 diabetes leads to enhanced release of β-oxidation products because of impaired fatty acid oxidation: effects of tetradecylthioacetic acid and eicosapentaenoic acid. Diabetes, 58, 527–535.
  • Williams, M.D., Van Remmen, H., Conrad, C.C., Huang, T.T., Epstein, C.J. & Richardson, A. 1998. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J.Biol.Chem., 273, 28510–28515.
  • Xu, X., Zhao, J., Xu, Z., Peng, B., Huang, Q., Arnold, E., & Ding, J. 2004. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J.Biol.Chem., 279, 33946–33957.
  • Yan, H., Parsons, D.W., Jin, G., McLendon, R., Rasheed, B.A., Yuan, W., Kos, I., Batinic-Haberle, I., Jones, S., Riggins, G.J., Friedman, H., Friedman, A., Reardon, D., Herndon, J., Kinzler, K.W., Velculescu, V.E., Vogelstein, B. & Bigner, D.D. 2009. IDH1 and IDH2 mutations in gliomas. N.Engl.J.Med., 360, 765–773.
  • Yang, E.S., Richter, C., Chun, J.S., Huh, T.L., Kang, S.S. & Park, J.W. 2002. Inactivation of NADP(+)-dependent isocitrate dehydrogenase by nitric oxide. Free.Radic.Biol.Med., 33, 927–937.
  • Yang, X.J. & Seto, E. 2008. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol.Cell., 31, 449–461.
  • Yogev, O., Yogev, O., Singer, E., Shaulian, E., Goldberg, M., Fox, T.D. & Pines, O. 2010. Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLoS.Biol., 8, e1000328.
  • Yoon, Y.S., Byun, H.O., Cho, H., Kim, B.K. & Yoon, G. 2003. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J.Biol.Chem., 278, 51577–51586.
  • Yu, Z., Costello, L.C., Feng, P. & Franklin, R.B. 2006. Characterization of the mitochondrial aconitase promoter and the identification of transcription factor binding. Prostate, 66, 1061–1069.
  • Yudkoff, M., Nelson, D., Daikhin, Y. & Erecinska, M. 1994. Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J.Biol.Chem., 269, 27414–27420.
  • Zhao, S., Lin, Y., Xu, W., Jiang, W., Zha, Z., Wang, P., Yu, W., Li, Z., Gong, L., Peng, Y., Ding, J., Lei, Q., Guan, K.L. & Xiong, Y. 2009. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science, 324, 261–265.
  • Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., Li, Y., Shi, J., An, W., Hancock, S.M., He, F., Qin, L., Chin, J., Yang, P., Chen, X., Lei, Q., Xiong, Y. & Guan, K.L. 2010a. Regulation of cellular metabolism by protein lysine acetylation. Science, 327, 1000–1004.
  • Zhao, X., León, I.R., Bak, S., Mogensen, M., Wrzesinski, K., Højlund, K. & Jensen, O.N. 2010b. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol.Cell.Proteomics., 10, M110.000299.
  • Zimmet, P. 2000. Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted? J.Intern.Med., 247, 301–310.
  • Zimmet, P., Alberti, K.G. & Shaw, J. 2001. Global and societal implications of the diabetes epidemic. Nature, 414, 782–787.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.