10
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Transgenic models for eye malformations

Pages 85-104 | Accepted 03 Aug 1995, Published online: 08 Jul 2009

References

  • Bronshtein M, Zimmer E, Gershoni-Baruch R, Yoffe N, Meyer H, Blumenfeld Z. First- and second-trimester diagnosis of fetal ocular defects and associated anomalies: report of eight cases. Obstet Gynecol 1991; 77: 443–449
  • Elston J. Epidemiology of visual handicap in childhood. Pediatric Ophthalmology, D Taylor. Blackwell Science Publications, Boston, Oxford, London 1990; 3–6
  • Merin S. Inherited Eye Diseases. Diagnosis and Clinical Management. Marcel Dekker, New York, Basel, Hong Kong 1991
  • Stoll C, Alembik Y, Dott B, Roth M P. Epidemiology of congenital eye malformations in 131,760 consecutive births. Ophthalmic Paediatr Genet 1992; 13: 179–186
  • Wilson G N. Genomics of human dysmorphogenesis. Am J Med Genet 1992; 42: 187–196
  • Ivens A, Moore G, Williamson R. Molecular approaches to dysmorphology. J Med Genet 1988; 25: 473–479
  • Darling S M, Abbott C M. Mouse models of human single gene disorders. I. Non-transgenic mice. Bioessays 1992; 14: 359–366
  • Gelatt K N, Das N D. Animal models for inherited cataracts: a review. Curr Eye Res 1984; 3: 765–778
  • Muggleton-Harris A L. Mouse mutants. Model systems to study congenital cataract. Int Rev Cytol 1986; 104: 25–36
  • Cooper D N, Schmidtke J. Molecular genetic approaches to the analysis and diagnosis of human inherited disease: an overview. Ann Med 1992; 24: 29–42
  • Howard R O. Classification of chromosomal eye syndromes. Int Ophthalmol 1981; 4: 77–91
  • Spaeth G, Nelson L B, Beaudoin A R. Ocular teratology. Ocular Anatomy, Embryology, and Teratology, F A Jacobiec. Harper & Row Publ., Philadelphia 1982; 955–1080
  • Searle A G, Edwards J H, Hall J G. Mouse homologues of human hereditary disease. J Med Genet 1994; 31: 1–19
  • Rosenfeld P J, McKusick V A, Amberger J S, Dryja T P. Recent advances in the gene map of inherited eye disorders: primary hereditary diseases of the retina, choroid, and vitreous. J Med Genet 1994; 31: 903–915
  • Gordon J W. Transgenic animals. Int Rev Cytol 1989; 115: 171–229
  • Gordon J W. Production of transgenic mice. Guide to Techniques in Mouse Development (Methods Enzymology, Vol. 225), P M Wasserman, M L DePamphilis. Academic Press, San Diego, New York, Boston 1993; 747–771
  • Wagner E F. On transferring genes into stem cells and mice. Eur Mol Biol Organ (embo) J 1990; 9: 3024–3032
  • Cuthbertson R A, Klintworth G K. Transgenic mice - a gold mine for furthering knowledge in pathobiology. Lab Invest 1988; 58: 484–502
  • Palmiter R D, Brinster R L. Transgenic mice. Cell 1985; 41: 243–345
  • Kondoh H, Katoh K, Takahashi Y. Specific expression of δ-crystallin gene in the lens and the pyramidal neurons of the piriform cortex in transgenic mice. Dev Biol 1987; 120: 177–185
  • Piatgorsky J. Gene expression and genetic engineering in the lens. Invest Ophthalmol Vis Sci 1987; 28: 9–28
  • Piatgorsky J. Lens crystallins and their genes: diversity and tissue-specific expression. Faseb J 1989; 3: 1933–1940
  • Takahashi Y, Hanaoka K, Hayasaka M, Katoh K, Kato Y, Okada T S, Kondoh H. Embryonic stem cell-mediated transfer and correct regulation of the chicken δ-crystallin gene in developing mouse embryos. Development 1988; 102: 259–369
  • Kim R Y, Wistow G J. Expression of the duck α-enolase/γ-crystallin gene intransgenic mice. Faseb J 1993; 7: 464–469
  • Liou G I, Geng L, A-Ubaidi M R, Matragoon S, Hanten G, Baehr W, Overbeek P A. Tissue-specific expression in transgenic mice directed by the 5′-flanking sequences of the human gene encoding interphoto-receptor retinoid-binding protein. J Biol Chem 1990; 265: 8373–8376
  • Yokoyama T, Liou G I, Caldwell R B, Overbeek P A. Photoreceptor-specific activity of the human interphoto-receptor retinoid-binding protein (irbp) promoter in transgenic mice. Exp Eye Res 1992; 55: 225–233
  • Usukura J, Khoo W, Abe T, Breitman M L, Shinohara T. Cone cells fail to develop normally in transgenic mice showing ablation of rod photoreceptor cells. Cell Tissue Res 1994; 275: 79–90
  • Gridley T. Insertional versus targeted mutagenesis in mice. New Biol 1991; 3: 1025–1034
  • Hodgkinson C A, Moore K J, Nakayama A, Steingrimsson E, Copeland N G, Jenkins N A, Arnheiter H. Mutations in the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 1993; 74: 395–404
  • Hughes M J, Lingrel J B, Krakowsky J M, Anderson K P. A helix-loop-helix transcription factor-like gene is located at the mi locus. J Biol Chem 1993; 268: 20687–20690
  • Breitman M L, Bernstein A. Engineering cellular deficits in transgenic mice by genetic ablation. Transgenic Animals, F Grosveld, G Kollias. Academic Press, London, San Diego, New York 1992; 127–146
  • Bonnerot C, Nicolas J-F. Application of lacz gene fusions to postimplantation development. Guide to Techniques in Mouse Development (Methods Enzymology, Vol. 225), P M Wassarman, M L DePamphilis. Academic Press, San Diego, New York, Boston 1993; 451–469
  • Gendron-Maguire M, Gridley T. Identification of transgenic mice. Guide to Techniques in Mouse Development (Methods Enzymology, Vol. 225), P M Wassarman, M L DePamphilis. Academic Press, San Diego, New York, Boston 1993; 794–802
  • Sasson D, Rosenthal N. Detection of messenger rna by in situ hybridization. Guide to Techniques in Mouse Development (Methods Enzymology, Vol. 225), P M Wassarman, M L DePamphilis. Academic Press, San Diego, New York, Boston 1993; 384–404
  • Theuring F. Transgenic animals in human gene analysis. The Human Genome. A Functional Analysis, F Farzaneh, D N Cooper. bios Science Publ., Oxford 1995; 185–205
  • Epstein C J, Avraham K B, Lovett M. Transgenic mice with increased CuZn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc Natl Acad Sci USA 1987; 84: 8044–8088
  • Epstein C J, Chan P H, Cadet J L. Resistance of sod-transgenic mice to oxidative stress. Gene Transfer and Therapy in the Nervous System, F Gage, Y Christen. Springer, Berlin, Heidelberg, New York 1992; 106–117
  • Avraham K B, Schickler M, Sapoznikow D, Yarom R, Groner Y. Down's syndrome: abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu/Zn-superoxide dismutase. Cell 1988; 54: 823–829
  • Avraham K B, Sugarman H, Rotshenker S, Groner Y. Down's syndrome: morphological remodelling and increased complexity in the neuromuscular junction of transgenic CuZn-superoxide dismutase mice. J Neurocytol 1991; 20: 208–215
  • Ting C-N, Kohrman D, Burgess D L. Insertional mutation on mouse chromosome 18 with vestibular and craniofacial abnormalities. Genetics 1994; 136: 247–254
  • Theuring F, Götz W, Balling R, Korf H-W, Schulze F, Herken R, Gruss P. Tumorigenesis and eye abnormalities in transgenic mice expressing msv-sv 40 large T-antigen. Oncogene 1990; 5: 225–232
  • Ophthalmic Pathology. An Atlas and Textbook, Vol. 1–2, W H Spencer. W.B. Saunders, Philadelphia, London, Toronto 1985
  • Lambert S, Hoyt C. Lens. Pediatric Ophthalmology, D Taylor. Blackwell Science Publications, Boston, Oxford, London 1990; 299–332
  • Bloemendal H. Disorganization of membranes and abnormal intermediate filament assembly lead to cataract. Invest Ophthalmol Vis Sci 1991; 32: 445–455
  • Tripathi B J, Tripathi R C, Borisuth N SC, Dhaliwal R, Dhaliwal D. Rodent models of congenital and hereditary cataract in man. Lens Eye Toxic Res 1991; 8: 373–413
  • Eva A, Graziani G, Zannini M, Merin L M, Khillan J S, Overbeek P A. Dominant dysplasia of the lens in transgenic mice expressing the dbl oncogene. New Biol 1991; 3: 158–168
  • Dunial, Pieper F, Manenti S, Van de Kemp A, Devilliers G, Benedetti E L, Bloemendal H. Plasma membrane-cytoskeleton damage in eye lenses of transgenic mice expressing desmin. Eur J Cell Biol 1990; 53: 59–74
  • Monteiro M J, Hoffmann P N, Gearhart J D, Cleveland D W. Expression of nf-l in both neuronal and nonneuronal cells of transgenic mice: increased neurofilament density in axons without affecting caliber. J Cell Biol 1990; 111: 1543–1557
  • Capetanaki Y, Starnes S, Smith S. Expression of the chicken vimentin gene in transgenic mice: efficient assembly of the avian protein into the cytoskeleton. Proc Natl Acad Sci USA 1989; 86: 4882–4886
  • Capetanaki Y, Smith S, Heath J P. Overexpression of the vimentin gene in transgenic mice inhibits normal lens cell differentiation. J Cell Biol 1989; 109: 1653–1664
  • Krimpenfort P J, Schaart G, Pieper F R. Tissue-specific expression of the vimentin-desmin hybrid gene in transgenic mice. Eur Mol Biol Organ (e m b o) J 1988; 7: 941–947
  • Tripathi B J, Tripathi R C, Livingston A M, Borisuth N SC. The role of growth factors in the embryogenesis and differentiation of the eye. Am J Anat 1991; 192: 442–471
  • Taverne J. Transgenic mice in the study of cytokine function. Int J Exp Pathol 1993; 74: 525–546
  • Egwuagu C E, Sztein J, Chan C-C, Reid W, Mahdi R, Nussenblatt R B, Chepelinsky A B. Ectopic expression of gamma interferon in the eyes of transgenic mice induces ocular pathology and mhc class II gene expression. Invest Ophthalmol Vis Sci 1994; 35: 332–341
  • Geiger K, Howes E, Gallina M, Huang X J, Travis G H, Sarvetnick N. Transgenic mice expressing IFN-γ in the retina develop inflammation of the eye and photoreceptor loss. Invest Ophthalmol Vis Sci 1994; 35: 2667–2681
  • Robinson M L, Overbeek P A, Verran D J. Extracellular fgf-1 acts as a lens differentiation factor in transgenic mice. Development 1995; 121: 505–514
  • Lammer E J, Chen D T, Hoar M PHR. Retinoic acid embryopathy. N Engl J Med 1985; 313: 837–841
  • Tini M, Otulakowski G, Breitman M L, Tsui L-C, Giguère V. An everted repeat mediates retinoic acid induction of the γF-crystallin gene: evidence of adirect role for retinoids in lens development. Genes Dev 1993; 7: 295–307
  • Balkan W, Klintworth G K, Bock C B, Linney E. Transgenic mice expressing a constitutively active retinoic acid receptor in the lens exhibit ocular defects. Dev Biol 1992; 151: 622–625
  • Perez-Castro A V, Tran V T, Nguyen-Huu M C. Defective lens fiber differentiation and pancreatic tumorigenesis caused by ectopic expression of the cellular retinoic acid-binding protein I. Development 1993; 119: 363–375
  • Hanahan D. Transgenic mice as probes into complex systems. Science 1989; 246: 1265–1275
  • Adams J M, Cory S. Transgenic models of tumor development. Science 1991; 254: 1161–1167
  • Fowlis D J, Balmain A. Oncogenes and tumour suppressor genes in transgenic mouse models of neoplasia. Eur J Cancer 1993; 29A: 638–645
  • Griep A E, Kuwabara T, Lee E J, Westphal H. Perturbed development of the mouse lens by polyomavirus large T antigen does not lead to tumor formation. Genes Dev 1989; 3: 1075–1085
  • Mahon K A, Chepelinsky A B, Khillan J S, Overbeek P A, Piatgorsky J, Westphal H. Oncogenesis of the lens in transgenic mice. Science 1987; 235: 1622–1628
  • Westphal H. sv 40 T antigens cause phakoma, c-mos a defect in lens fiber differentiation in transgenic mice. Molecular Biology of the Eye: Genes, Vision, and Ocular Disease, J Piatgorsky, T Shinohara, P S Zelenko. Alan R. Liss, New York 1988; 445–448
  • Griep A E, Herber R, Jeon S, Lohse J K, Dubiekzig R R, Lambert P F. Tumorigenicity by human papillomavirus type 16 e6 and e7 in transgenic mice correlates with alterations in epithelial cell growth and differentiation. J Virol 1993; 63: 1373–1384
  • Nakamura T, Mahon K A, Miskin R, Dey A, Kuwabara T, Westphal H. Differentiation and oncogenesis: phenotypically distinct lens tumors in transgenic mice. New Biol 1989; 1: 193–204
  • Griep A E, Westphal H. Differentiation versus proliferation of transgenic mouse lens cells expressing polyoma large T antigen: evidence for regulation by an endogenous growth factor. New Biol 1990; 2: 727–738
  • Bryce D M, Liu Q, Khoo W, Tsui L-C, Breitman M L. Progressive and regressive fate of lens tumors correlates with subtle differences in transgene expression in γF-crystallin-sv 40 T antigen transgenic mice. Oncogene 1993; 8: 1611–1620
  • Pichel J, Lasko M, Westphal H. Timing of sv 40 oncogene activation by site-specific recombination determines subsequent tumor progression during murine lens development. Oncogene 1993; 8: 3333–3342
  • Veromann S. Eye lens tumors: an experimental-histological and theoretical approach. Tumor Biol 1994; 15: 135–140
  • Khillan J S, Oskarsson M K, Propst F, Kuwabara T, Vande Woude G F, Westphal H. Defects in lens fiber differentiation are linked to c-mos overexpression in transgenic mice. Genes Dev 1987; 1: 1327–1335
  • Korf H-W, Götz W, Herken R, Theuring F, Gruss P, Schachenmayr W. S-antigen and rod-opsin immunoreactions in midline brain neoplasms of transgenic mice: similarities to pineal cell tumors and certain medulloblastomas in man. J Neuropathol Exp Neurol 1990; 49: 424–437
  • Götz W, Theuring F, Schachenmayr W, Korf H-W. Midline brain tumors in msv-sv 40-transgenic mice originate from the pineal organ. Acta Neuropathol 1992; 83: 308–314
  • Götz W, Theuring F, Favor J, Herken R. Eye pathology in transgenic mice carrying a msv-sv 40 large T-construct. Exp Eye Res 1991; 52: 41–49
  • Klotman P E, Rappaport J, Ray P, Kopp J B, Franks R, Bruggeman L A, Notkins A L. Transgenic models of hiv-i. Aids 1995; 9: 313–324
  • Iwakura Y, Shioda T, Tosu M, Yoshida E, Hayashi M, Nagata T, Shibuta H. The induction of cataracts by hiv-i in transgenic mice. Aids 1992; 6: 1069–1075
  • Landel C P, Zhao J, Bok D, Evans G A. Lens-specific expression of recombinant ricin induces developmental defects in the eyes of transgenic mice. Genes Dev 1988; 2: 1168–1178
  • Bateman J B. Microphthalmos. Int Ophthalmol Clin 1984; 24: 87–107
  • Romero R, Pilu G, Jeanty P, Ghidini A, Hobbins J C. Prenatal Diagnosis of Congenital Anomalies. Appleton & Lange, Norwalk, San Mateo 1988
  • Weiss M H, Kousseff B G, Ross E A, Longbottom J. Complex microphthalmos. Arch Ophthalmol 1989; 107: 1619–1624
  • Weiss M H, Kousseff B G, Ross E A, Longbottom J. Simple microphthalmos. Arch Ophthalmol 1989; 107: 1625–1630
  • Warburg M. An update on microphthalmos and coloboma. A brief survey of genetic disorders with microphthalmos and coloboma. Ophthalmic Paediatr Genet 1991; 12: 57–63
  • Warburg M. Classification of microphthalmos and coloboma. J Med Genet 1993; 30: 664–669
  • Warburg M, Friedrich U. Coloboma and microphthalmos in chromosomal aberrations. Chromosomal aberrations and neural crest cell developmental field. Ophthalmic Paediatr Genet 1987; 8: 105–118
  • Coulombre A J, Coulombre J L. Abnormal organogenesis in the eye. Handbook of Teratology, Vol. 2: Mechanisms and Pathogenesis, J G Wilson, F C Fraser. Plenum Press, New York, London 1979; 329–341
  • Garner A. The eye. Textbook of Fetal and Perinatal Pathology, J S Wigglesworth, D B Singer. Blackwell Scientific Publications, Oxford, London, Edinburgh 1991; vol. 2: 881–902
  • Chevez-Barrios P, Schaffner D L, Barrios R, Overbeek P A, Lebovitz R M, Lieberman M W. Expression of the ras T24 oncogene in the ciliary body pigment epithelium and retinal pigment epithelium results in hyperplasia, adenoma, and adenocarcinoma. Am J Pathol 1993; 143: 20–28
  • Scholz C L, Chan K K. Complicated colobomatous microphthalmia in the microphthalmic (mi/mi) mouse. Development 1987; 99: 501–508
  • Boissy R E, Boissy Y L, Krakowsky J M, Lamoreux M L, Lingrel J B, Nordlund J J. Ocular pathology in mice with a transgenic insertion at the microphthalmia locus. J Submicrosc Cytol Pathol 1993; 25: 319–332
  • Jackson I J, Raymond S. Manifestations of microphthalmia. Nat Genet 1994; 8: 209–210
  • Steingrimsson E, Moore K J, Lamoreux M L. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet 1994; 8: 256–263
  • Krakowsky J M, Boissy R E, Neumann J E, Lingrel J B. A dna insertional mutation results in microphthalmia in transgenic mice. Transgenic Res 1993; 2: 14–20
  • Pabo C O, Sauer R T. Transcription factors: structural families and principles of dna recognition. Annu Rev Biochem 1992; 61: 1053–1095
  • Kaur S, Key B, Stock J, McNeish J D, Akeson R, Potter S S. Targeted ablation of α-crystallin-synthesizing cells produces lens-deficient eyes in transgenic mice. Development 1989; 105: 613–619
  • Harrington L, Klintworth G K, Secor T E, Breitman M L. Developmental analysis of ocular morphogenesis in αA-crystallin/diphtheria toxin transgenic mice undergoing ablation of the lens. Dev Biol 1991; 148: 508–516
  • Key B, Liu L, Potter S S, Kaur S, Akeson R. Lens structures exist transiently in development of transgenic mice carrying an α-crystallin-diphtheria toxin hybrid gene. Exp Eye Res 1992; 55: 357–367
  • Breitman M L, Clapoff S, Rossant J, Tsui L-C, Glode M, Maxwell I H, Bernstein A. Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science 1987; 238: 1563–1565
  • Breitman M L, Bryce D M, Giddens E. Analysis of lens cell fate and eye morphogenesis in transgenic mice ablated for cells of the lens lineage. Development 1989; 106: 457–463
  • Breitman M L, Rombola H, Maxwell I H, Klintworth G K, Bernstein A. Genetic ablation in transgenic mice with an attenuated diphtheria toxin A gene. Mol Cell Biol 1990; 10: 474–479
  • Klein K L, Klintworth G K, Bernstein A, Breitman M L. Embryology and morphology of microphthalmia in transgenic mice expressing a γF-crystallin/diphtheria toxin A hybrid gene. Lab Invest 1992; 67: 31–41
  • Richardson W D. Transgenic mice in neurobiology. Transgenic Animals, F Grosveld, G Kollias. Academic Press, London, San Diego, New York 1992; 169–194
  • Fitch N, Kaback M. The Axenfeld syndrome and the Rieger syndrome. J Med Genet 1978; 15: 30–34
  • Shields M B, Buckley E, Klintworth G K, Thresher R. Axenfeld-Rieger syndrome. A spectrum of developmental disorders. Surv Ophthalmol 1985; 29: 387–409
  • Cook C S, Sulik K K. Keratolenticular dysgenesis (Peters' anomaly) as a result of acute embryonic insult during gastrulation. J Pediatr Ophthalmol Strab 1988; 25: 60–66
  • Eva A. Use of transgenic mice in the study of proto-oncogene functions. Semin Cell Biol 1992; 3: 137–145
  • Decsi A, Pfeifler R L, Qiu T, Lee D C, Friday J T, Bautch V L. Lens expression of TGFα in transgenic mice produces two distinct eye pathologies in the absence of tumors. Oncogene 1994; 9: 1965–1975
  • Luetteke N C, Qui T H, Pfeiffer R L, Oliver P, Smithies O, Lee D C. TGFα deficiency results in hair follicle and eye abnormalities in targeted and waved-I mice. Cell 1993; 73: 263–278
  • Mann G B, Fowler K J, Gabriel A, Nice E C, Williams R L, Dunn A R. Mice with a null mutation of the tgfα gene have abnormal skin architecture, wavy hair, and curly whiskers and often develop corneal inflammation. Cell 1993; 73: 249–261
  • Schrewe H, Gendron-Maguire M, Harbison M L, Gridley T. Mice homozygous for a null mutation of activin βB are viable and fertile. Mech Dev 1994; 47: 43–51
  • Heon E, Barsoum-Homsy M, Cevrette L, Jacob J-L, Milot J, Polemeno R, Musarella A M. Peters' anomaly. The spectrum of associated ocular and systemic malformations. Ophthalmic Paediatr Genet 1992; 13: 137–143
  • Tamura H, Jidoi J, Naora H, Matsui H, Katsuki M, Tanaka O. Opaque eyes developed in transgenic mice with T-cell receptor δ gene. Invest Ophthalmol Vis Sci 1995; 36: 467–477
  • Apple D J, Hamming N A, Gieser D K. Differential diagnosis of leukocoria. Intraocular Tumors, G A Peyman, D J Apple, D R Sanders. Academic Press, New York 1977; 235–283
  • Warburg M. Retinal malformations. Aetiological heterogeneity and morphological similarity in congenital retinal non-attachment and falciform folds. Trans Ophthalmol Soc UK 1979; 99: 272–283
  • Lahav M, Albert D M. Clinical and histopathological classification of retinal dysplasia. Am J Ophthalmol 1973; 75: 648–667
  • Warburg M. Heterogeneity of congenital retinal non-attachment falciform folds and retinal dysplasia. A guide to genetic counselling. Hum Hered 1976; 26: 137–148
  • Godel V, Nemet P, Lazar M. Retinal dysplasia. Doc Ophthalmol 1981; 51: 277–288
  • Van Doorenmalen W J. The developmental mechanics of the lens. Molecular and Cellular Biology of the Eye Lens, H Bloemendal. J. Wiley, New York, Chichester 1981; 415–435
  • Howes K A, Ransom N, Papermaster D S, Lasudry J GH, Albert D M, Windle J J. Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the hpv-16 e7 gene in the presence or absence of P53. Genes Dev 1994; 8: 1300–1310
  • Matsuo T. The genes involved in the morphogenesis of the eye. Jpn J Ophthalmol 1993; 37: 215–251
  • Kodama R, Eguchi G. Gene regulation and differentiation in vertebrate ocular tissues. Curr Opin Genet Dev 1994; 4: 703–708
  • Beebe D C. Homeobox genes and vertebrate eye development. Invest Ophthalmol Vis Sci 1994; 35: 2897–2900
  • Chalepakis G, Tremblay P, Gruss P. Pax genes mutants and molecular function. J Cell Sci Suppl 1992; 16: 61–67
  • Pierpont J W, Erickson R P. Facts on Pax. Am J Hum Genet 1993; 52: 451–454
  • Hanson I M, Fletcher J M, Jordan T. Mutations at the pax6 locus are found in heterogeneous anterior segment malformations including Peters' anomaly. Nat Genet 1994; 6: 168–173
  • Martha A, Ferell R E, Mintz-Hittner H, Lyons L A, Saunders G F. Paired box mutations in familial and sporadic aniridia predicts truncated aniridia proteins. Am J Hum Genet 1994; 54: 801–811
  • Strachan T, Read A P. pax genes. Curr Opin Gen Dev 1994; 4: 427–438
  • Sanyanusin P, Schimmenti L A, McNoe L A. Mutation of the pax2 gene in a family with nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 1995; 9: 358–364
  • Traboulsi E I. Developmental genes and ocular malformation syndromes. Am J Ophthalmol 1993; 115: 105–107
  • Gordon J W, Ruddle F H. dna-mediated genetic information of mouse embryos and bone marrow - a review. Gene 1985; 33: 121–136
  • Palmiter R D, Brinster R L. Germ-line transformation of mice. Annu Rev Genet 1986; 20: 465–499
  • Camper S A. Research applications of transgenic mice. Bio Techniques 1987; 5: 638–650
  • Jaenisch R. Transgenic animals. Science 1988; 240: 1468–1474
  • Rosenfeld M G, Crenshaw EB, III, Lira S A. Transgenic mice: applications to the study of the nervous system. Annu Rev Neurosci 1988; 11: 353–372
  • Babinet C, Morello D, Renard J P. Transgenic mice. Genome 1989; 31: 938–949
  • Capecchi M R. Altering the genome by homologous recombination. Science 1989; 244: 1288–1292
  • Connelly C S, Fahl W E, Iannaccone P M. The role of transgenic animals in the analysis of various biological aspects of normal and pathologic states. Exp Cell Res 1989; 183: 257–276
  • Rusconi S. Transgenic regulation in laboratory animals. Experientia 1991; 47: 866–877
  • Friedman R A, Ryan A F. Transgenic mice. Current applications to the study of the auditory and vestibular system. Otolaryngol Clin North Am 1992; 25: 1017–1026
  • Koller B H, Smithies O. Altering genes in animals by gene targeting. Annu Rev Immunol 1992; 10: 705–730
  • Kollias G, Grosveld F. The study of gene regulation in transgenic mice. Transgenic Animals, F Grosveld, G Kollias. Academic Press, London, San Diego, New York 1992; 79–98
  • Koretsky A P. Investigation of cell physiology in the animal using transgenic technology. Am J Physiol 1992; 262: C261–C275
  • Theuring F, Götz W, Korf H-W. Induced tumorigenesis in transgenic mice. Molecular Approaches to the Study and Treatment of Human Diseases, T O Yoshida, J M Wilson. Elsevier Science Publishers, Amsterdam 1992; 385–397
  • Boyd A L, Samid D. Review: molecular biology of transgenic animals. J Anim Sci 1993; 71: 1–9, Suppl. 3
  • Field L J. Transgenic mice in cardiovascular research. Annu Rev Physiol 1993; 55: 97–114
  • Gossen J, Vijg J. Transgenic mice as model systems for studying gene mutations in vivo. Tig 1993; 9: 27–31
  • Iannaccone P M, Scarpelli D G. Exploring pathogenetic mechanisms using transgenic animals. Ann Med 1993; 25: 131–138
  • Melton D W. Gene targeting in the mouse. BioEssays 1994; 16: 633–638
  • Stewart T A. Models of human endocrine disorders in transgenic rodents. Trends Endocrinol Metab 1993; 4: 136–141
  • Sullivan N, Gatehouse D, Tweats D. Mutation cancer and transgenic models: relevance to the toxicology industry. Mutagen 1993; 8: 167–174
  • Aguzzi A, Brandner S, Sure U, Riiedi D, Isenmann S. Transgenic and knockout mice: models for neurological disease. Brain Pathol 1994; 4: 3–20
  • Bronson S K, Smithies O. Altering mice by homologous recombination using embryonic stem cells. J Biol Chem 1994; 269: 27155–27158
  • D'Ercole A J. dna transfer. Growth Regul 1994; 4: 6–10, Suppl 1
  • Jänne J, Hyttinen J-M, Peura T, Tolvanen M, Alhonen L, Sinervirta R, Halmekytö M. Transgenic bioreactors. Int J Biochem 1994; 26: 859–870
  • Kappel C A, Bieberich C J, Jay G. Evolving concepts in molecular pathology. FASEB J 1994; 8: 583–592
  • Knapp J R, Kopchick J J. The use of transgenic mice in nutrition research. J Nutr 1994; 124: 461–468
  • Transgenic Animal Technology. A Laboratory Handbook, C A Pinkert. Academic Press, San Diego, New York, Boston 1994
  • Yamada G, Sugimura K, Stuart E T. Gene-targeting approaches in the study of cellular processes involved in growth or differentiation. Advances in the analysis of oncogenes, tumour-suppressor genes, cytokine/receptor systems and developmental control genes. Eur J Biochem 1994; 226: 739–749
  • Guide to Techniques in Mouse Development (Methods Enzymology, Vol. 225), P M Wassarman, M L DePamphilis. Academic Press, San Diego, New York, Boston 1993

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.