1,273
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Nantenine as an acetylcholinesterase inhibitor: SAR, enzyme kinetics and molecular modeling investigations

, &
Pages 46-55 | Received 04 Nov 2009, Accepted 12 Jan 2010, Published online: 28 Jun 2010

References

  • Corey-Bloom J. The ABC of Alzheimer’s disease: cognitive changes and their management in Alzheimer’s disease and related dementias. Int Psychogeriatr 2002;14:51–75.
  • Akhondzadeh S, Noroozian M. Alzheimer’s disease: pathophysiology and pharmacotherapy. IDrugs 2002;5:1062–1069.
  • Backman L, Jones S, Berger AK, Laukka EJ, Small BJ. Cognitive impairment in preclinical Alzheimer’s disease: a meta-analysis. Neuropsychology 2005;19:520–531.
  • Shimokawa A, Yatomi N, Anamizu S, Torii S, Isono H, Sugai Y, Kohno M. Influence of deteriorating ability of emotional comprehension on interpersonal behavior in Alzheimer-type dementia. Brain Cognition 2001;47:423–433.
  • Weinshenker D. Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 2008;5:342–345.
  • Hardy J. Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis 2006;9:151–153.
  • Pimplikar SW. Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell B 2009;4:1261–1268.
  • Korczyn AD. The amyloid cascade hypothesis. Alzheimers Dement 2008;4:176–178.
  • Eckman CB, Eckman EA. An update on the amyloid hypothesis. Neurol Clin 2007;25:669–682.
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992;256:184–185.
  • Sivaprakasam K. Towards a unifying hypothesis of Alzheimer’s disease: cholinergic system linked to plaques, tangles and neuroinflammation. Curr Med Chem 2006;13:2179–2188.
  • Terry AV Jr, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003;306:821–827.
  • Sabbagh MN, Farlow MR, Relkin N, Beach TG. Do cholinergic therapies have disease-modifying effects in Alzheimer’s disease? Alzheimers Dement 2006;2:118–125.
  • Colombres M, Sagal JP, Inestrosa NC. An overview of the current and novel drugs for Alzheimer’s disease with particular reference to anti-cholinesterase compounds. Curr Pharm Design 2004;10:3121–3130.
  • Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging 2008;3:211–225.
  • Ritchie CW, Ames D, Clayton T, Lai R. Metaanalysis of randomized trials of the efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer disease. Am J Geriatr Psychiatry 2004;12:358–369.
  • Wagstaff AJ, McTavish D. Tacrine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in Alzheimer’s disease. Drugs Aging 1994;4:510–540.
  • Loy C, Schneider L. Galantamine for Alzheimer’s disease and mild cognitive impairment. Cochrane database of systematic reviews (Online). 2006(1):CD001747.
  • Heinze M, Andreae D, Grohmann R. Rivastigmin and impaired motor function. Pharmacopsychiatry 2002;35:79–80.
  • Dunn NR, Pearce GL, Shakir SA. Adverse effects associated with the use of donepezil in general practice in England. J Psychopharmacol 2000;14:406–408.
  • Moller HJ. Reappraising neurotransmitter-based strategies. Eur Neuro-psychopharmacol 1999;9:S53–9.
  • Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Melchiorre C. From dual binding site acetylcholinesterase inhibitors to multi-target-directed ligands (MTDLs): a step forward in the treatment of Alzheimer’s disease. Mini-Rev Med Chem 2008;8:960–967.
  • Cavalli A, Bottegoni G, Raco C, De Vivo M, Recanatini M. A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase. J Med Chem 2004;47:3991–3999.
  • Inestrosa NC, Sagal JP, Colombres M. Acetylcholinesterase interaction with Alzheimer amyloid beta. Sub-cell Biochem 2005;38:299–317.
  • De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 2001;40:10447–10457.
  • Bolognesi ML, Cavalli A, Valgimigli L, Bartolini M, Rosini M, Andrisano V, Recanatini M, Melchiorre C. Multi-target-directed drug design strategy: from a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against Alzheimer’s disease. J Med Chem 2007;50:6446–6449.
  • del Monte-Millan M, Garcia-Palomero E, Valenzuela R, Usan P, de Austria C, Munoz-Ruiz P, Rubio L, Dorronsoro l, Martinez A, Medina M. Dual binding site acetylcholinesterase inhibitors: potential new disease-modifying agents for AD. J Mol Neurosci 2006;30:85–88.
  • Munoz-Ruiz P, Rubio L, Garcia-Palomero E, Dorronsoro I, del Monte-Millan M, Valenzuela R et al. Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J Med Chem 2005;48:7223–7233.
  • Camps P, Formosa X, Munoz-Torrero D, Petrignet J, Badia A, Clos MV. Synthesis and pharmacological evaluation of huprine-tacrine heterodimers: subnanomolar dual binding site acetylcholinesterase inhibitors. J Med Chem 2005;48:1701–1704.
  • Shamma M, Guinaudeau H. Biogenetic pathways for the aporphinoid alkaloids. Tetrahedron 1984;40:4795–4822.
  • Si YG, Gardner MP, Tarazi FI, Baldessarini RJ, Neumeyer JL. Synthesis and binding studies of 2-O- and 11-O-substituted N-alkylnoraporphines. Bioorg Med Chem Lett 2008;18:3971–3973.
  • Si YG, Gardner MP, Tarazi FI, Baldessarini RJ, Neumeyer JL. R-(-)-N-alkyl-11-hydroxy-10-hydroxymethyl- and 10-methyl-aporphines as 5-HT1A receptor ligands. Bioorg Med Chem Lett 2007;17:4128–4130.
  • Toth M, Berenyi S, Csutoras C, Kula NS, Zhang K, Baldessarini RJ, Neumeyer JL. Synthesis and dopamine receptor binding of sulfur-containing aporphines. Bioorg Med Chem 2006;14:1918–1923.
  • Hedberg MH, Linnanen T, Jansen JM, Nordvall G, Hjorth S, Unelius L et al. 11-substituted (R)-aporphines: synthesis, pharmacology, and modeling of D2A and 5-HT1A receptor interactions. J Med Chem 1996;39:3503–3513.
  • Kula NS, Baldessarini RJ, Kebabian JW, Neumeyer JL. S-(+)-aporphines are not selective for human D3 dopamine receptors. Cell Mol Neurobiol 1994;14:185–191.
  • Cannon JG, Jackson H, Long JP, Leonard P, Bhatnagar RK. 5-HT1A-receptor antagonism: N-alkyl derivatives of (R)-(-)-8,11-dimethoxynoraporphine. J Med Chem 1989;32:1959–1962.
  • Neumeyer JL, Arana GW, Law SJ, Lamont JS, Kula NS, Baldessarini RJ. Aporphines, 36. Dopamine receptor interactions of trihydroxyaporphines. Synthesis, radioreceptor binding, and striatal adenylate cyclase stimulation of 2,10,11-trihydroxyaporphines in comparison with other hydroxylated aporphines. J Med Chem 1981;24:1440–1445.
  • Likhitwitayawuid K, Angerhofer CK, Chai H, Pezzuto JM, Cordell GA, Ruangrungsi N. Cytotoxic and antimalarial alkaloids from the tubers of Stephania pierrei. J Nat Prod 1993;56:1468–1478.
  • Chaudhary S, Pecic S, Le Gendre O, Harding WW. Microwave-assisted direct biaryl coupling: first application to the synthesis of aporphines. Tetrahedron Lett 2009;50:2437–2439.
  • Hung TM, Na M, Dat NT, Ngoc TM, Youn U, Kim HJ et al. Cholinesterase inhibitory and anti-amnesic activity of alkaloids from Corydalis turtschaninovii. J Ethnopharmacol 2008;119:74–80.
  • Tang H, Wei YB, Zhang C, Ning FX, Qiao W, Huang SL et al. Synthesis, biological evaluation and molecular modeling of oxoisoaporphine and oxoaporphine derivatives as new dual inhibitors of acetylcholinesterase/butyrylcholinesterase. Eur J Med Chem 2009;44:2523–2532.
  • Marston A, Kissling J, Hostettmann K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem Anal 2002;13:515–4.
  • Adsersen A, Kjolbye A, Dall O, Jager AK. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava Schweigg. & Kort. J Ethnopharmacol 2007;113:179–182.
  • Abagyan RA, Batalov S. Do aligned sequences share the same fold? J Mol Biol 1997;273:355–368.
  • Farag NA, Mohamed SR, Soliman GA. Design, synthesis, and docking studies of novel benzopyrone derivatives as H(1)-antihistaminic agents. Bioorg Med Chem 2008;16:9009–9017.
  • Shrestha S, Bhattarai BR, Kafle B, Lee, K-H, Cho H. Derivatives of 1,4-bis(3-hydroxycarbonyl-4-hydroxyl)styrylbenzene as PTP1B inhibitors with hypoglycemic activity. Bioorg Med Chem 2008;16:8643–8652.
  • Suzuki A. The Suzuki reaction with arylboron compounds in arene chemistry. In: Suzuki A. ed Modern Arene Chemistry. New York: Wiley-VCH, 2002:53–106.
  • Yasuhara T, Zaima N, Hashimoto S, Yamazaki M, Muraoka O. First total synthesis of crispine B by nitro aldol and the Bischler-Napieralski reaction. Heterocycles 2009;77:1397–1402.
  • Hynes PS, Stupple PA, Dixon DJ. Organocatalytic Asymmetric Total Synthesis of (R)-Rolipram and Formal Synthesis of (3S,4R)-Paroxetine. Org Lett 2008;10:1389–1391.
  • Liermann JC, Opatz T. Synthesis of lamellarin U and lamellarin G trimethyl ether by alkylation of a deprotonated alpha-aminonitrile. J Org Chem 2008;73:4526–4531.
  • Wang YC, Georghiou PE. First enantioselective total synthesis of (-)-tejedine. Org Lett 2002;4:2675–2678.
  • Chaudhary S, Pecic S, Legendre O, Navarro HA, Harding WW. (+/-)-Nantenine analogs as antagonists at human 5-HT(2A) receptors: C1 and flexible congeners. Bioorg Med Chem Lett 2009;19:2530–2532.
  • Rhee IK, van de Meent M, Ingkaninan K, Verpoorte R. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J Chromatogr 2001;915:217–223.
  • Cardozo T, Totrov M, Abagyan R. Homology modeling by the ICM method. Proteins: Structure, Function, and Genetics 1995;23:403–414.
  • Szegletes T, Mallender WD, Rosenberry TL. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands. Biochemistry 1998;37:4206–4216.
  • Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 1991;253:872–879.
  • Harel M, Quinn DM, Nair HK, Silman I, Sussman JL. The x-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase. J Am Chem Soc 1996;118:2340–2346.
  • Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 1995;8:127–134.
  • Perry EK. The cholinergic hypothesis–ten years on. Br Med Bull 1986;42:63–69.
  • Bartus RT, Dean RL, Pontecorvo MJ, Flicker C. The cholinergic hypothesis: a historical overview, current perspective, and future directions. Ann N Y Acad Sci 1985;444:332–358.
  • Holzgrabe U, Kapkova P, Alptuzun V, Scheiber J, Kugelmann E. Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin Ther Targets 2007;11:161–179.
  • Shen Y, Zhang J, Sheng R, Dong X, He Q, Yang B et al. Synthesis and biological evaluation of novel flavonoid derivatives as dual binding acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2009;24:372–380.
  • Haviv H, Wong DM, Silman I, Sussman JL. Bivalent ligands derived from Huperzine A as acetylcholinesterase inhibitors. Curr Top Med Chem 2007;7:375–387.
  • Dorronsoro I, Alonso D, Castro A, del Monte M, Garcia-Palomero E, Martinez A. Synthesis and biological evaluation of tacrine-thiadiazolidinone hybrids as dual acetylcholinesterase inhibitors. Arch Pharm (Weinheim) 2005;338:18–23.
  • Markmee S, Ruchirawat S, Prachyawarakorn V, Ingkaninan K, Khorana N. Isoquinoline derivatives as potential acetylcholinesterase inhibitors. Bioorg Med Chem Lett 2006 15;16:2170–2172.
  • Ribeiro, RdA, De Lores Arnaiz GR. Nantenine and papaverine differentially modify synaptosomal membrane enzymes. Phytomedicine 2000;7:313–323.
  • Tang H, Wei YB, Zhang C, Ning FX, Qiao W, Huang SL et al. Synthesis, biological evaluation and molecular modeling of oxoisoaporphine and oxoaporphine derivatives as new dual inhibitors of acetylcholinesterase/butyrylcholinesterase. Eur J Med Chem 2009;44:2523–2532.
  • Hitchcock SA. Blood-brain barrier permeability considerations for CNS-targeted compound library design. Curr Opin Chem Biol 2008;12:318–323.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.