1,193
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Discovery of potential pancreatic cholesterol esterase inhibitors using pharmacophore modelling, virtual screening, and optimization studies

, , &
Pages 535-545 | Received 01 Jul 2010, Accepted 26 Oct 2010, Published online: 14 Dec 2010

References

  • Wang, C.S., Hartsuck, J.A. Bile salt-activated lipase. A multiple function lipolytic enzyme. Biochim. Biophys. Acta 1993, 1166, 1–19.
  • Lombardo, D. Bile salt-dependent lipase: its pathophysiological implications. Biochim. Biophys. Acta 2001, 1533, 1–28.
  • Wang, C.S., Martindale, M.E., King, M.M., Tang, J. Bile-salt-activated lipase: effect on kitten growth rate. Am. J. Clin. Nutr. 1989, 49, 457–463.
  • Howles, P.N., Stemmerman, G.N., Fenoglio-Preiser, C.M., Hui, D.Y. Carboxyl ester lipase activity in milk prevents fat-derived intestinal injury in neonatal mice. Am. J. Physiol. 1999, 277, G653–G661.
  • Howles, P.N., Carter, C.P., Hui, D.Y. Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice. J. Biol. Chem. 1996, 271, 7196–7202.
  • Brodt-Eppley, J., White, P., Jenkins, S., Hui, D.Y. Plasma cholesterol esterase level is a determinant for an atherogenic lipoprotein profile in normolipidemic human subjects. Biochim. Biophys. Acta 1995, 1272, 69–72.
  • Fält, H., Hernell, O., Bläckberg, L. Does bile salt-stimulated lipase affect cholesterol uptake when bound to rat intestinal mucosa in vitro? Pediatr. Res. 2002, 52, 509–515.
  • Lin, G., Liao, W.C., Chiou, S.Y. Quantitative structure–activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-N-substituted carbamates. Bioorg. Med. Chem. 2000, 8, 2601–2607.
  • Pietsch, M., Gutschow, M. Alternate substrate inhibition of cholesterol esterase by thieno[2,3-d][1,3]oxazin-4-ones. J. Biol. Chem. 2002, 277, 24006–24013.
  • Terzyan, S., Wang, C.S., Downs, D., Hunter, B., Zhang, X.C. Crystal structure of the catalytic domain of human bile salt activated lipase. Protein Sci. 2000, 9, 1783–1790.
  • Lin, G., Shieh, C.T., Tsai, Y.C., Hwang, C.I., Lu, C.P., Chen, G.H. Structure–reactivity probes for active site shapes of cholesterol esterase by carbamate inhibitors. Biochim. Biophys. Acta 1999, 1431, 500–511.
  • Feaster, S.R., Quinn, D.M. Mechanism-based inhibitors of mammalian cholesterol esterase. Meth. Enzymol. 1997, 286, 231–252.
  • Feaster, S.R., Lee, K., Baker, N., Hui, D.Y., Quinn, D.M. Molecular recognition by cholesterol esterase of active site ligands: structure–reactivity effects for inhibition by aryl carbamates and subsequent carbamyl enzyme turnover. Biochemistry 1996, 35, 16723–16734.
  • Tew, D.G., Boyd, H.F., Ashman, S., Theobald, C., Leach, C.A. Mechanism of inhibition of LDL phospholipase A2 by monocyclic-beta-lactams. Burst kinetics and the effect of stereochemistry. Biochemistry 1998, 37, 10087–10093.
  • Chiou, S.Y., Lai, C.Y., Lin, L.Y., Lin, G. Probing stereoselective inhibition of the acyl binding site of cholesterol esterase with four diastereomers of 2′-N-alpha-methylbenzylcarbamyl-1,1′-bi-2-naphthol. BMC Biochem. 2005, 6, 17.
  • Krantz, A. A classification of enzyme inhibitors. Bioorg. Med. Chem. Lett. 1992, 2, 1327–1334.
  • Leung, D., Abbenante, G., Fairlie, D.P. Protease inhibitors: current status and future prospects. J. Med. Chem. 2000, 43, 305–341.
  • Martyn, D.C., Moore, M.J., Abell, A.D. Succinimide and saccharin-based enzyme-activated inhibitors of serine proteases. Curr. Pharm. Des. 1999, 5, 405–415.
  • Neumann, U., Gütschow, M. N-(Sulfonyloxy)phthalimides and analogues are potent inactivators of serine proteases. J. Biol. Chem. 1994, 269, 21561–21567.
  • Hlasta, D.J., Pagini, E.D. Human leukocyte elastase inhibitors. Annu. Rep. Med. Chem. 1994, 29, 195–204.
  • Powers, J.C., Odake, S., Oleksyszyn, J., Hori, H., Ueda, T., Boduszek, B., Kam, C. Proteases—structures, mechanism and inhibitors. Agents Actions Suppl. 1993, 42, 3–18.
  • Krantz, A., Spencer, R.W., Tam, T.F., Liak, T.J., Copp, L.J., Thomas, E.M., Rafferty, S.P. Design and synthesis of 4H-3,1-benzoxazin-4-ones as potent alternate substrate inhibitors of human leukocyte elastase. J. Med. Chem. 1990, 33, 464–479.
  • Deck, L.M., Baca, M.L., Salas, S.L., Hunsaker, L.A., Vander Jagt, D.L. 3-Alkyl-6-chloro-2-pyrones: selective inhibitors of pancreatic cholesterol esterase. J. Med. Chem. 1999, 42, 4250–4256.
  • Lin, G., Shieh, C.T., Ho, H.C., Chouhwang, J.Y., Lin, W.Y., Lu, C.P. Structure–reactivity relationships for the inhibition mechanism at the second alkyl-chain-binding site of cholesterol esterase and lipase. Biochemistry 1999, 38, 9971–9981.
  • Heynekamp, J.J., Hunsaker, L.A., Vander Jagt, T.A., Royer, R.E., Deck, L.M., Vander Jagt, D.L. Isocoumarin-based inhibitors of pancreatic cholesterol esterase. Bioorg. Med. Chem. 2008, 16, 5285–5294.
  • Bharatham, N., Bharatham, K., Lee, K.W. Pharmacophore identification and virtual screening for methionyl-tRNA synthetase inhibitors. J. Mol. Graph. Model. 2007, 25, 813–823.
  • Pietsch, M., Gütschow, M. Synthesis of tricyclic 1,3-oxazin-4-ones and kinetic analysis of cholesterol esterase and acetylcholinesterase inhibition. J. Med. Chem. 2005, 48, 8270–8288.
  • Sakai, K., Watanabe, K., Masuda, K., Tsuji, M., Hasumi, K., Endo, A. Isolation, characterization and biological activities of novel triprenyl phenols as pancreatic cholesterol esterase inhibitors produced by Stachybotrys sp. F-1839. J. Antibiot. 1995, 48, 447–456.
  • Eilfeld, A., González Tanarro, C.M., Frizler, M., Sieler, J., Schulze, B., Gütschow, M. Synthesis and elastase-inhibiting activity of 2-pyridinyl-isothiazol-3(2H)-one 1,1-dioxides. Bioorg. Med. Chem. 2008, 16, 8127–8135.
  • Guner, O.F., Henry, D.R. Phamacophore Perception, Development, and Use in Drug Design. La Jolla, CA: International University Line, 2000, pp. 193–210.
  • Thangapandian, S., John, S., Sakkiah, S., Lee, K.W. Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design. Eur. J. Med. Chem. 2010, 45, 4409–4417.
  • Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26.
  • Walters, W.P., Murcko, M.A. Prediction of ‘drug-likeness’. Adv. Drug Deliv. Rev. 2002, 54, 255–271.
  • John, S., Thangapandian, S., Sakkiah, S., Lee, K.W. Identification of potent virtual leads to design novel indoleamine 2,3-dioxygenase inhibitors: pharmacophore modeling and molecular docking studies. Eur. J. Med. Chem. 2010, 45, 4004–4012.
  • Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748.
  • Manoj, K.A., Krishna, K.I., Lalitha, G. Docking of phosphonate and trehalose analog inhibitors into M. tuberculosis mycolyltransferase Ag85C: comparison of the two scoring fitness functions GoldScore and ChemScore, in the GOLD software. Bioinformation 2007, 1, 339–350.
  • Marcel, L.V., Jason, C.C., Michael, J.H., Christopher, W.M., Richard, D.T. Improved protein–ligand docking using GOLD. Proteins: Struct. Funct. Genet. 2003, 52, 609–623.
  • Wallace, A.C., Laskowski, R.A., Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng. 1995, 8, 127–134.
  • Böhm, H.J. The development of a simple empirical scoring function to estimate the binding constant for a protein–ligand complex of known three-dimensional structure. J. Comput. Aided Mol. Des. 1994, 8, 243–256.
  • Krisztina, B., Thomas, S., Johann, G. Structure and reaction based evaluation of synthetic accessibility. J. Comput. Aided Mol. Des. 2007, 21, 311–325.
  • Andrea, Z., Krisztina, B., Thomas, S., Achim, H., Christof, H.S., Johann, G., Holger, C., Christian, L., Jorg, D., Juri, P., Matthias, R. Second-generation de novo design: a view from a medicinal chemist perspective. J. Comput. Aided Mol. Des. 2009, 23, 593–602.
  • Sheng, Y.Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today 2010, 15, 444–450.
  • Wagner, A.B. SciFinder Scholar 2006: an empirical analysis of research topic query processing. J. Chem. Inf. Model. 2006, 46, 767–774.
  • Wang, Y., Bolton, E., Dracheva, S., Karapetyan, K., Shoemaker, B.A., Suzek, T.O., Wang, J., Xiao, J., Zhang, J., Bryant, S.H. An overview of the PubChem BioAssay resource. Nucleic Acids Res. 2010, 38, D255–D266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.