1,098
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Ionic derivatives of betulinic acid as novel HIV-1 protease inhibitors

, , , , &
Pages 715-721 | Received 08 Jun 2011, Accepted 27 Jul 2011, Published online: 10 Oct 2011

References

  • Yogeeswari P, Sriram D. Betulinic acid and its derivatives: a review on their biological properties. Curr Med Chem 2005;12:657–666.
  • Krasutsky PA. Birch bark research and development. Nat Prod Rep 2006;23:919–942.
  • Baglin I, Mitaine-Offer AC, Nour M, Tan K, Cavé C, Lacaille-Dubois MA. A review of natural and modified betulinic, ursolic and echinocystic acid derivatives as potential antitumor and anti-HIV agents. Mini Rev Med Chem 2003;3:525–539.
  • Aiken C, Chen CH. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol Med 2005;11:31–36.
  • Fujioka T, Kashiwada Y, Kilkuskie RE, Cosentino LM, Ballas LM, Jiang JB et al. Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod 1994;57:243–247.
  • Kashiwada Y, Hashimoto F, Cosentino LM, Chen CH, Garrett PE, Lee KH. Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents. J Med Chem 1996;39:1016–1017.
  • Kashiwada Y, Wang HK, Nagao T, Kitanaka S, Yasuda I, Fujioka T et al. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. j Nat Prod 1998;61:1090–1095.
  • Kashiwada Y, Chiyo J, Ikeshiro Y, Nagao T, Okabe H, Cosentino LM et al. Synthesis and anti-HIV activity of 3-alkylamido-3-deoxy-betulinic acid derivatives. Chem Pharm Bull 2000;48:1387–1390.
  • Kanamoto T, Kashiwada Y, Kanbara K, Gotoh K, Yoshimori M, Goto T et al. Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation. Antimicrob Agents Chemother 2001;45:1225–1230.
  • Zhou J, Yuan X, Dismuke D, Forshey BM, Lundquist C, Lee KH et al. Small-molecule inhibition of human immunodeficiency virus type 1 replication by specific targeting of the final step of virion maturation. j Virol 2004;78:922–929.
  • Mayaux JF, Bousseau A, Pauwels R, Huet T, Hénin Y, Dereu N et al. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells. Proc Natl Acad Sci usa 1994;91:3564–3568.
  • Evers M, Poujade C, Soler F, Ribeill Y, James C, Lelièvre Y et al. Betulinic acid derivatives: a new class of human immunodeficiency virus type 1 specific inhibitors with a new mode of action. j Med Chem 1996;39:1056–1068.
  • Soler F, Poujade C, Evers M, Carry JC, Hénin Y, Bousseau A et al. Betulinic acid derivatives: a new class of specific inhibitors of human immunodeficiency virus type 1 entry. j Med Chem 1996;39:1069–1083.
  • Labrosse B, Pleskoff O, Sol N, Jones C, Hénin Y, Alizon M. Resistance to a drug blocking human immunodeficiency virus type 1 entry (RPR103611) is conferred by mutations in gp41. j Virol 1997;71:8230–8236.
  • Holz-Smith SL, Sun IC, Jin L, Matthews TJ, Lee KH, Chen CH. Role of human immunodeficiency virus (HIV) type 1 envelope in the anti-HIV activity of the betulinic acid derivative IC9564. Antimicrob Agents Chemother 2001;45:60–66.
  • Bär S, Alizon M. Role of the ectodomain of the gp41 transmembrane envelope protein of human immunodeficiency virus type 1 in late steps of the membrane fusion process. j Virol 2004;78:811–820.
  • Pengsuparp T, Cai L, Fong HH, Kinghorn AD, Pezzuto JM, Wani MC et al. Pentacyclic triterpenes derived from Maprounea africana are potent inhibitors of HIV-1 reverse transcriptase. j Nat Prod 1994;57:415–418.
  • Ma C, Nakamura N, Miyashiro H, Hattori M, Shimotohno K. Inhibitory effects of constituents from Cynomorium songaricum and related triterpene derivatives on HIV-1 protease. Chem Pharm Bull 1999;47:141–145.
  • Quéré L, Wenger T, Schramm HJ. Triterpenes as potential dimerization inhibitors of HIV-1 protease. Biochem Biophys Res Commun 1996;227:484–488.
  • Barbaro G, Scozzafava A, Mastrolorenzo A, Supuran CT. Highly active antiretroviral therapy: current state of the art, new agents and their pharmacological interactions useful for improving therapeutic outcome. Curr Pharm Des 2005;11:1805–1843.
  • Mastrolorenzo A, Rusconi S, Scozzafava A, Barbaro G, Supuran CT. Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors. Curr Med Chem 2007;14:2734–2748.
  • Jäger S, Winkler K, Pfüller U, Scheffler A. Solubility studies of oleanolic acid and betulinic acid in aqueous solutions and plant extracts of Viscum album L. Planta Med 2007;73:157–162.
  • Zhao H, Jones CL, Cowins JV. Lipase dissolution and stabilization in ether-functionalized ionic liquids. Green Chem 2009;11:1128–1138.
  • Mukherjee R, Kumar V, Srivastava SK, Agarwal SK, Burman AC. Betulinic acid derivatives as anticancer agents: structure activity relationship. Anticancer Agents Med Chem 2006;6:271–279.
  • Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 2008;10:696–705.
  • Jeong HJ, Chai HB, Park SY, Kim DS. Preparation of amino acid conjugates of betulinic acid with activity against human melanoma. Bioorg Med Chem Lett 1999;9:1201–1204.
  • Hough WL, Rogers RD. Ionic liquids then and now: From solvents to materials to active pharmaceutical ingredients. Bull Chem Soc Jpn 2007;80:2262–2269.
  • Stoimenovski J, MacFarlane DR, Bica K, Rogers RD. Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm Res 2010;27:521–526.
  • Bica K, Rijksen C, Nieuwenhuyzen M, Rogers RD. In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys Chem Chem Phys 2010;12:2011–2017.
  • Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD et al. The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 2007;31:1429–1436.
  • Ho PT, Ngu K-y. An effective synthesis of N-(9-fluorenylmethyloxycarbonyl) α-amino aldehydes from S-benzyl thioesters. J Org Chem 1993;58:2313–2316.
  • Ammazzalorso A, Amoroso R, Bettoni G, De Filippis B, Giampietro L, Pierini M, Tricca ML. Asymmetric synthesis of (S)-ibuprofen by esterification with amides of (S)-lactic acid as chiral auxiliaries: experimental and theoretical results. Tetrahedron Lett 2002;43:4325–4328.
  • Rodrigues PC, Roth T, Fiebig HH, Unger C, Mülhaupt R, Kratz F. Correlation of the acid-sensitivity of polyethylene glycol daunorubicin conjugates with their in vitro antiproliferative activity. Bioorg Med Chem 2006;14:4110–4117.
  • Dinarès I, de Miguel CG, Ibáñez A, Mesquida N, Alcalde E. Imidazolium ionic liquids: A simple anion exchange protocol. Green Chem 2009;11:1507–1510.
  • Zhao H, Baker GA, Holmes S. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem 2011;9:1908–1916.
  • Richards AD, Phylip LH, Farmerie WG, Scarborough PE, Alvarez A, Dunn BM et al. Sensitive, soluble chromogenic substrates for HIV-1 proteinase. j Biol Chem 1990;265:7733–7736.
  • Porter DJ, Hanlon MH, Carter LH 3rd, Danger DP, Furfine ES. Effectors of HIV-1 protease peptidolytic activity. Biochemistry 2001;40:11131–11139.
  • Chinchilla R, Nájera C, Yus M, Heumann A. Kinetic resolution of racemic carboxylic acids with homochiral alcohols and dicyclohexylcarbodiimide. Tetrahedron: Asymmetry 1991;2:101–104.
  • Blusztajn JK. Choline, a vital amine. Science 1998;281:794–795.
  • Dunn BM, Kammermann B, McCurry KR. The synthesis, purification, and evaluation of a chromophoric substrate for pepsin and other aspartyl proteases: design of a substrate based on subsite preferences. Anal Biochem 1984;138:68–73.
  • Dunn BM, Jimenez M, Parten BF, Valler MJ, Rolph CE, Kay J. A systematic series of synthetic chromophoric substrates for aspartic proteinases. Biochem j 1986;237:899–906.
  • Tewtrakul S, Subhadhirasakul S, Rattanasuwan P. HIV-1 protease inhibitory effects of some selected plants in Caesalpiniaceae and Papilionaceae families. Songklanakarin J Sci Technol 2003;25:509–514.
  • Wondrak EM, Louis JM, Oroszlan S. The effect of salt on the Michaelis Menten constant of the HIV-1 protease correlates with the Hofmeister series. FEBS Lett 1991;280:344–346.
  • Gruber A, Wheat JC, Kuhen KL, Looney DJ, Wong-Staal F. Differential effects of HIV-1 protease inhibitors on dendritic cell immunophenotype and function. j Biol Chem 2001;276:47840–47843.
  • Min BS, Bae KH, Kim YH, Miyashiro H, Hattori M, Shimotohno K. Screening of Korean plants against human immunodeficiency virus type 1 protease. Phytother Res 1999;13:680–682.
  • Wu X, Ohrngren P, Ekegren JK, Unge J, Unge T, Wallberg H et al. Two-carbon-elongated HIV-1 protease inhibitors with a tertiary-alcohol-containing transition-state mimic. j Med Chem 2008;51:1053–1057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.