2,111
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Biological and computational evaluation of resveratrol inhibitors against Alzheimer’s disease

, , , , , , , , , , , & show all
Pages 67-77 | Received 15 Dec 2014, Accepted 16 Dec 2014, Published online: 06 Jul 2015

References

  • Ghosh AK, Brindisi M, Tang J. Developing β-secretase inhibitors for treatment of Alzheimer’s disease. J Neurochem 2012;120:71–83
  • Luo Y, Bolon B, Kahn S, et al. Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 2001;4:231–2
  • Tamagno E, Bardini P, Guglielmotto M, et al. The various aggregation states of beta-amyloid 1-42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic Biol Med 2006;41:202–12
  • Tamagno E, Parola M, Bardini P, et al. Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. Neurochem 2005;92:628–36
  • Shimmyo Y, Kihara T, Akaike A, et al. Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. Neuroreport 2008;19:1329–33
  • Huang Y, Jin M, Pi R, et al. Acrolein induces Alzheimer’s disease-like pathologies in vitro and in vivo. Toxicol Lett 2013;217:184–91
  • Huang Y, Jin M, Pi R, et al. Protective effects of caffeic acid and caffeic acid phenethyl ester against acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Neurosci Lett 2013;535:146–51
  • Dargusch R, Schubert DJ. Specificity of resistance to oxidative stress. J Neurochem 2002;81:1394–400
  • Koufaki M, Theodorou E, Galaris D, et al. Chroman/catechol hybrids: synthesis and evaluation of their activity against oxidative stress induced cellular damage. J Med Chem 2006;49:300–6
  • Villalonga-Barber C, Meligova AK, Alexi X, et al. New hydroxystilbenoid derivatives endowed with neuroprotective activity and devoid of interference with estrogen and aryl hydrocarbon receptor-mediated transcription. Bioorg Med Chem 2011;19:339–51
  • Chiruta C, Schubert D, Dargusch R, Maher P. Chemical modification of the multitarget neuroprotective compound fisetin. J Med Chem 2012;55:378–89
  • Kenche VB, Barnham KJ. Alzheimer’s disease & metals: therapeutic opportunities. Br J Pharmacol 2011;3:211–19
  • Kenche VB, Zawisza I, Masters CL, et al. Mixed ligand Cu2+ complexes of a model therapeutic with Alzheimer’s amyloid-β peptide and monoamine neurotransmitters. Inorg Chem 2013;52:4303–18
  • Uranga RM, Katz S, Salvador GA. Enhanced phosphatidylinositol 3-kinase (PI3K)/Akt signaling has pleiotropic targets in hippocampal neurons exposed to iron-induced oxidative stress. J Biol Chem 2013;288:19773–84
  • Marumoto S, Miyazawa M. Structure–activity relationships for naturally occurring coumarins as β-secretase inhibitor. Bioorg Med Chem 2012;20:784–8
  • Essa MM, Vijayan RK, Castellano-Gonzalez G, et al. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 2012;37:1829–42
  • Hwang EM, Young BR, Hoi YK, et al. BACE1 inhibitory effects of lavandulyl flavanones from Sophora flavescens. Bioorg Med Chem 2008;16:6669–74
  • Sasaki H, Miki K, Kinoshita K, et al. β-Secretase (BACE-1) inhibitory effect of biflavonoids. Bioorg Med Chem Lett 2010;20:4558–60
  • Shimmyo Y, Kihara T, Akaike A, et al. Flavonols and flavones as BACE-1 inhibitors: structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim Biophys Acta 2008;80:819–25
  • Cho JK, Ryu YB, Curtis-Long MJ, et al. Inhibition and structural reliability of phenylated flavones from the stem bark of Morus lhou on β-secretase (BACE-1). Bioorg Med Chem Lett 2011;21:2945–8
  • Williams RJ, Spencer JP. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 2012;52:35–45
  • Jeon S-Y, Bae KH, Seong Y-H, Song K-S. Green tea catechins as a BACE1 (β-Secretase) inhibitor. Bioorg Med Chem Lett 2003;13:3905–8
  • Kwak H-M, Jeon S-Y, Song B-H, et al. β-Secretase (BACE1) inhibitors from pomegranate (Punica granatum) husk. Arch Pharm Res 2005;28:1328–32
  • Choi CW, Choi YH, Cha M-R, et al. In vitro BACE-1 inhibitory activity of resveratrol oligomers from the seed extract of Paeonia lactiflora. Planta Med 2011;77:380–2
  • Jeon S-Y, Kwon SH, Seong Y-H, et al. β-Secretase (BACE-1)-inhibiting stilbenoids from Smilax Rhizoma. Phytomedicine 2007;14:403–8
  • Choi YH, Yoo MY, Choi CW, et al. A new specific BACE-1 inhibitor from the stem bark extract of Vitis vinifera. Planta Med 2009;75:537–40
  • Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J Biol Chem 2005;280:37377–82
  • Skrettas G, Meligova AK, Villalonga-Barber C, et al. Engineered chimeric enzymes as tools for drug discovery: generating reliable bacterial screens for the detection, discovery, and assessment of estrogen receptor modulators. J Am Chem Soc 2007;129:8443–57
  • Polgár T, Keserü GM. Virtual screening for β-secretase (BACE1) inhibitors reveals the importance of protonation states at Asp32 and Asp228. J Med Chem 2005;48:3749–55
  • VolSurf, version 4.1.4, Molecular Discovery Ltd.; 2005. Available from: http://www.moldiscovery.com/ [last accessed 14 Jan 2015].
  • Patel S, Vuillard L, Cleasby A, et al. Apo and inhibitor complex structures of BACE (beta-secretase). J Mol Biol 2004;343:407–16
  • Barman A, Prabhakar RJ. Protonation states of the catalytic dyad of β-secretase (BACE1) in the presence of chemically diverse inhibitors: a molecular docking study. Chem Inf Model 2012;52:1275–87
  • Kacker P, Masetti M, Mangold M, et al. Combining dyad protonation and active site plasticity in BACE-1 structure-based drug design. J Chem Inf Model 2012;52:1079–85
  • Gueto-Tettay C, Drosos JC, Vivas-Reyes RJ. Quantum mechanics study of the hydroxyethylamines-BACE-1 active site interaction energies. Comput Aided Mol Des 2011;25:583–97
  • Sussman F, Otero JM, Villaverde MC, et al. On a possible neutral charge state for the catalytic dyad in β-secretase when bound to hydroxyethylene transition state analogue inhibitors. J Med Chem 2011;54:3081–5
  • Tounge BA, Rajamani R, Baxter EW, et al. Linear interaction energy models for beta-secretase (BACE) inhibitors: role of van der Waals, electrostatic, and continuum-solvation terms. J Mol Graph Model 2006;24:475–84
  • Yu N, Hayik SA, Wang B, et al. Assigning the protonation states of the key aspartates in β-secretase using QM/MM X-ray structure refinement. J Chem Theory Comput 2006;2:1057–609
  • Rajamani R, Reynolds CH. Modeling the protonation states of the catalytic aspartates in β-secretase. J Med Chem 2004;47:5159–66
  • Park H, Lee S. Determination of the active site protonation state of β-secretase from molecular dynamics simulation and docking experiment: implications for structure-based inhibitor design. J Am Chem Soc 2003;125:16416–22
  • Bas DC, Rogers DM, Jensen JH. Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 2008;73:765–83
  • Olsson MHM, Søndergard CR, Rostkowski M, Jensen JH. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 2011;7:525–37
  • Hyland LJ, Tomaszek TA Jr, Roberts GD, et al. Human immunodeficiency virus-1 protease. 1. Initial velocity studies and kinetic characterization of reaction intermediates by 18O isotope exchange. Biochemistry 1991;30:8441–53
  • Pietrucci F, Marinelli F, Carloni P, Laio A. Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations. J Am Chem Soc 2009;131:11811–18
  • Hou T, Zhang W, Wang J, Wang W. Predicting drug resistance of the HIV-1 protease using molecular interaction energy components. Proteins 2009;74:837–46
  • Steele TG, Hills ID, Nomland AA, et al. Identification of a small molecule b-secretase inhibitor that binds without catalytic aspartate engagement. Bioorg Med Chem Lett 2009;19:17–20
  • Bowers S, Xu YZ, Yuan S, et al. Structure-based design of novel dihydroisoquinoline BACE-1 inhibitors that do not engage the catalytic aspartates. Bioorg Med Chem Lett 2013;23:2181–6
  • Case DA. AMBER 11. San Francisco: University of California; 2010
  • Koukoulitsa C, Durdagi S, Siapi E, et al. Comparison of thermal effects of stilbenoid analogs in lipid bilayers using differential scanning calorimetry and molecular dynamics: correlation of thermal effects and topographical position with antioxidant activity. Eur Biophys J 2011;40:865–75
  • Bäck M, Nyhlén J, Kvarnström I, et al. Design, synthesis and SAR of potent statine-based BACE-1 inhibitors: exploration of P1 phenoxy and benzyloxy residues. Bioorg Med Chem 2008;16:9471–86
  • Alexi X, Kasiotis KM, Fokialakis N, et al. Differential estrogen receptor subtype modulators: assessment of estrogen receptor subtype-binding selectivity and transcription-regulating properties of new cycloalkyl pyrazoles. J Steroid Biochem Mol Biol 2009;117:159–67
  • Sybyl. Version 8.0. St. Louis, MO: TRIPOS Associates Inc.; 2008
  • Vinter JG, Davis A, Saunders MR. Strategic approaches to drug design. I. An integrated software framework for molecular modelling. J Comput Aided Mol Des 1987;1:31–51
  • Crivori P, Cruciani G, Carrupt PA, Testa B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J Med Chem 2000;43:2204–16
  • Cruciani G, Crivori P, Carrupt P-A, Testa B. Molecular fields in quantitative structure-permeation relationships: the VolSurf approach. J Mol Str: Theochem 2000;503:17–30
  • Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177–96
  • Suite 2012: Schrödinger Suite 2012 QM-Polarized Ligand Docking protocol; Glide version 5.8. New York, NY: Schrödinger, LLC.; 2012
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000;28:235–42
  • Milletti F, Storchi L, Sforna G, Cruciani G. New and original pKa prediction method using Grid Molecular Interaction Fields. J Chem Inf Model 2007;47:2172–81
  • Milletti F, Vulpetti A. Tautomer preference in PDB complexes and its impact on structure-based drug discovery. J Chem Inf Model 2010;50:1062–74
  • Hornak V, Abel R, Okur A, et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006;65:712–25
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general Amber forcefield. J Comput Chem 2004;25:1157–74
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulationg liquid water. Phys 1983;79:926–35
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N.Log(N) method for Ewald sums in large systems. J Chem Phys 1993;98:10089–92
  • Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD. Langevin stabilization of molecular dynamics. J Chem Phys 2001;114:2090–8
  • Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977;23:327–41
  • Fogolari F, Brigo A, Molinari H. Protocol for MM/PBSA molecular dynamics simulations of proteins. Biophys J 2003;85:159–66
  • Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000;33:889–97
  • Honig B, Nicholls A. Classical electrostatics in biology and chemistry. Science 1995;268:1144–9
  • Sanner MF, Olson AJ, Spehner JC. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 1996;38:305–20
  • Stoica I, Sadiq SK, Coveney PV. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. J Am Chem Soc 2008;130:2639–48
  • Weiser J, Shenkin PS, Still WC. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 1999;20:217–30
  • Wang W, Donini O, Reyes CM, Kollman PA. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 2001;30:211–43

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.