2,893
Views
38
CrossRef citations to date
0
Altmetric
Review Article

Drosophila melanogaster: a model organism for controlling Dipteran vectors and pests

, , , &
Pages 505-513 | Received 25 Jun 2014, Accepted 09 Jul 2014, Published online: 08 Sep 2014

References

  • Stephenson R, Metcalfe NH. Drosophila melanogaster: a fly through its history and current use. J Roy Coll Phys Edinburgh 2013;43:70–5
  • Adams MD, Celniker SE, Holt RA, et al. The genome sequence of Drosophila melanogaster. Science 2000;287:2185–95
  • Reiter LT, Potocki L, Chien S, et al. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 2001;11:1114–25
  • Lloyd TE, Taylor JP. Flightless flies: Drosophila models of neuromuscular disease. Ann N Y Acad Sci 2010;1184:e1–20
  • Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011;63:411–36
  • Dionne MS, Schneider DS. Models of infectious diseases in the fruit fly Drosophila melanogaster. Dis Models Mech 2008;1:43–9
  • Brandt A, Vilcinskas A. The fruit fly Drosophila melanogaster as a model for aging research. Adv Biochem Eng Biotechnol 2013;135:63–77
  • Rubin GM. Drosophila melanogaster as an experimental organism. Science 1988;240:1453–9
  • Sardiello M, Licciulli F, Catalano D, et al. MitoDrome: a database of Drosophila melanogaster nuclear genes encoding proteins targeted to the mitochondrion. Nucleic Acids Res 2003;31:322–4
  • Kaun KR, Devineni AV, Heberlein U. Drosophila melanogaster as a model to study drug addiction. Hum Genet 2012;131:959–75
  • Heberlein U, Tsai LT, Kapfhamer D, Lasek AW. Drosophila, a genetic model system to study cocaine-related behaviors: a review with focus on LIM-only proteins. Neuropharmacology 2009;56:97–106
  • Chhabra R, Kolli S, Bauer JH. Organically grown food provides health benefits to Drosophila melanogaster. PLoS One 2013;8:e52988
  • Li J, Qian B, Yin J, et al. Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides. PLoS One 2013;8:e72986
  • Tang Z, Chen H, Song S, et al. Disposable screen-printed electrode coupled with recombinant Drosophila melanogaster acetylcholinesterase and multiwalled carbon nanotubes for rapid detection of pesticides. J AOAC Int 2011;94:307–12
  • Obe G, Sperling K, Belitz HJ. Some aspects of chemical mutagenesis in man and in Drosophila. Ang Chem 1971;10:302–14
  • Paradi E, Lovenyak M. Studies on genetical effect of pesticides in Drosophila melanogaster. Acta Biol Acad Sci Hungar 1981;32:119–21
  • Remnant EJ, Good RT, Schmidt JM, et al. Gene duplication in the major insecticide target site, Rdl, in Drosophila melanogaster. Proc Natl Acad Sci USA 2013;110:14705–10
  • Sharma A, Mishra M, Shukla AK, et al. Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster. J Hazard Mater 2012;221-222:275–87
  • Mayer F, Mayer N, Chinn L, et al. Evolutionary conservation of vertebrate blood-brain barrier chemoprotective mechanisms in Drosophila. J Neurosci 2009;29:3538–50
  • Rand MD. Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 2010;32:74–83
  • Ferry JG. The gamma class of carbonic anhydrases. Biochim Biophys Acta 2010;1804:374–81
  • Syrjanen L, Tolvanen M, Hilvo M, et al. Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster) and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates. BMC Biochem 2010;11:28
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81
  • Zolfaghari Emameh R, Barker H, Tolvanen ME, et al. Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. Parasit Vectors 2014;7:38
  • Lane TW, Saito MA, George GN, et al. Biochemistry: a cadmium enzyme from a marine diatom. Nature 2005;435:42
  • Neish AC. Studies on chloroplasts: their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem J 1939;33:300–8
  • Burnell JN, Gibbs MJ, Mason JG. Spinach chloroplastic carbonic anhydrase: nucleotide sequence analysis of cDNA. Plant Physiol 1990;92:37–40
  • Guilloton MB, Korte JJ, Lamblin AF, et al. Carbonic anhydrase in Escherichia coli. A product of the cyn operon. J Biol Chem 1992;267:3731–4
  • Supuran CT. Bacterial carbonic anhydrases as drug targets: toward novel antibiotics? Front Pharmacol 2011;2:34
  • Tripp BC, Smith K, Ferry JG. Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 2001;276:48615–18
  • Guilloton MB, Lamblin AF, Kozliak EI, et al. A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli. J Bacteriol 1993;175:1443–51
  • Nishimori I, Onishi S, Takeuchi H, Supuran CT. The alpha and beta classes carbonic anhydrases from Helicobacter pylori as novel drug targets. Curr Pharm Des 2008;14:622–30
  • Mitsuhashi S, Ohnishi J, Hayashi M, Ikeda M. A gene homologous to beta-type carbonic anhydrase is essential for the growth of Corynebacterium glutamicum under atmospheric conditions. Appl Microbiol Biotechnol 2004;63:592–601
  • Fukuzawa H, Suzuki E, Komukai Y, Miyachi S. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci USA 1992;89:4437–41
  • Merlin C, Masters M, McAteer S, Coulson A. Why is carbonic anhydrase essential to Escherichia coli? J Bacteriol 2003;185:6415–24
  • Mitsuhashi S, Mizushima T, Yamashita E, et al. X-ray structure of beta-carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO(2) hydration. J Biol Chem 2000;275:5521–6
  • Tetu SG, Tanz SK, Vella N, et al. The Flaveria bidentis beta-carbonic anhydrase gene family encodes cytosolic and chloroplastic isoforms demonstrating distinct organ-specific expression patterns. Plant Physiol 2007;144:1316–27
  • Ludwig M. The molecular evolution of beta-carbonic anhydrase in Flaveria. J Exp Bot 2011;62:3071–81
  • Zabaleta E, Martin MV, Braun HP. A basal carbon concentrating mechanism in plants? Plant Sci 2012;187:97–104
  • Majeau N, Coleman JR. Effect of CO2 concentration on carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiol 1996;112:569–74
  • Kimber MS, Pai EF. The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases. EMBO J 2000;19:1407–18
  • Cronk JD, Endrizzi JA, Cronk MR, et al. Crystal structure of E. coli beta-carbonic anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci 2001;10:911–22
  • Fasseas MK, Tsikou D, Flemetakis E, Katinakis P. Molecular and biochemical analysis of the alpha class carbonic anhydrases in Caenorhabditis elegans. Mol Biol Rep 2011;38:1777–85
  • DeRosa AA, Chirgwin SR, Williams JC, Klei TR. Isolation and characterization of a gene encoding carbonic anhydrase from Ostertagia ostertagi and quantitative measurement of expression during in vivo exsheathment. Vet Parasitol 2008;154:58–66
  • Krungkrai SR, Suraveratum N, Rochanakij S, Krungkrai J. Characterisation of carbonic anhydrase in Plasmodium falciparum. Intern J Parasitol 2001;31:661–8
  • De Cian MC, Andersen AC, Bailly X, Lallier FH. Expression and localization of carbonic anhydrase and ATPases in the symbiotic tubeworm Riftia pachyptila. J Exp Biol 2003;206:399–409
  • Pan P, Vermelho AB, Capaci Rodrigues G, et al. Cloning, characterization, and sulfonamide and thiol inhibition studies of an alpha-carbonic anhydrase from Trypanosoma cruzi, the causative agent of Chagas disease. J Med Chem 2013;56:1761–71
  • Fasseas MK, Tsikou D, Flemetakis E, Katinakis P. Molecular and biochemical analysis of the beta class carbonic anhydrases in Caenorhabditis elegans. Mol Biol Rep 2010;37:2941–50
  • Syrjanen L, Parkkila S, Scozzafava A, Supuran CT. Sulfonamide inhibition studies of the beta carbonic anhydrase from Drosophila melanogaster. Bioorg Med Chem Lett 2014;24:2797–801
  • Syrjanen L, Vermelho AB, Rodrigues Ide A, et al. Cloning, characterization, and inhibition studies of a beta-carbonic anhydrase from Leishmania donovani chagasi, the protozoan parasite responsible for leishmaniasis. J Med Chem 2013;56:7372–81
  • Yeates DK, Wiegmann BM. Congruence and controversy: toward a higher-level phylogeny of Diptera. Annu Rev Entomol 1999;44:397–428
  • Wiegmann BM, Yeates DK, Thorne JL, Kishino H. Time flies, a new molecular time-scale for brachyceran fly evolution without a clock. Syst Biol 2003;52:745–56
  • Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011;7:539
  • Waterhouse AM, Procter JB, Martin DM, et al. Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009;25:1189–91
  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000;300:1005–16
  • Sankari LS, Ramakrishnan K. Oral myiasis caused by Chrysomya bezziana. JOMFP 2010;14:16–8
  • Romero-Cabello R, Calderon-Romero L, Sanchez-Vega JT, et al. Cutaneous myiasis caused by Chrysomya bezziana larvae, Mexico. Emerg Infect Dis 2010;16:2014–15
  • Supuran CT. Carbonic anhydrase inhibition/activation: trip of a scientist around the world in the search of novel chemotypes and drug targets. Curr Pharmaceut Design 2010;16:3233–45
  • McKenna R, Supuran CT. Carbonic anhydrase inhibitors drug design. Sub-cellular Biochem 2014;75:291–323
  • Badger M. The roles of carbonic anhydrases in photosynthetic CO(2) concentrating mechanisms. Photosynth Res 2003;77:83–94
  • Gubler DJ. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Compar Immunol Microbiol Infect Dis 2004;27:319–30
  • Tiawsirisup S, Kinley JR, Tucker BJ, et al. Vector competence of Aedes vexans (Diptera: Culicidae) for West Nile virus and potential as an enzootic vector. J Med Entomol 2008;45:452–7
  • Hay SI, Sinka ME, Okara RM, et al. Developing global maps of the dominant anopheles vectors of human malaria. PLoS Med 2010;7:e1000209
  • Krinsky WL. Animal disease agents transmitted by horse flies and deer flies (Diptera: Tabanidae). J Med Entomol 1976;13:225–75
  • Lindsay SW, Lindsay TC, Duprez J, et al. Chrysomya putoria, a putative vector of diarrheal diseases. PLoS Negl Trop Dis 2012;6:e1895
  • Vale DS, Cavalieri I, Araujo MM, et al. Myiasis in palate by Cochliomyia hominivorax. J Craniofac Surg 2011;22:e57–9
  • Andreadis TG. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. J Am Mosq Control Assoc 2012;28:137–51
  • Linthicum KJ. Introduction to the symposium Global Perspective on the Culex pipiens Complex in the 21st century: The Interrelationship of Culex pipiens, quinquefasciatus, molestus and others. J Am Mosq Control Assoc 2012;28:4–9
  • Johnson N, Voller K, Phipps LP, et al. Rapid molecular detection methods for arboviruses of livestock of importance to northern Europe. J Biomed Biotechnol 2012;2012:719402
  • Yu CY, Wang JS. Culicoides arakawae (Diptera: Ceratopogonidae) efficiently blood-fed and infected with Leucocytozoon caulleryi through a natural membrane. Vet Parasitol. 2001;99:297–303
  • Lowrie RC, Jr Raccurt CP. Assessment of Culicoides barbosai as a vector of Mansonella ozzardi in Haiti. Am J Trop Med Hyg 1984;33:1275–7
  • Veronesi E, Henstock M, Gubbins S, et al. Implicating Culicoides biting midges as vectors of Schmallenberg virus using semi-quantitative RT-PCR. PLoS One 2013;8:e57747
  • Aybar CA, Juri MJ, Santana M, et al. The spatio-temporal distribution patterns of biting midges of the genus Culicoides in Salta province, Argentina. J Insect Sci 2012;12:145
  • Meyer CL, Bennett GF. Observations on the sporogony of Plasmodium circumflexum Kikuth and Plasmodium polare Manwell in New Brunswick. Can J Zoo 1976;54:133–41
  • Glaizot O, Fumagalli L, Iritano K, et al. High prevalence and lineage diversity of avian malaria in wild populations of great tits (Parus major) and mosquitoes (Culex pipiens). PLoS One 2012;7:e34964
  • Hu JM, Wang CC, Chao LL, et al. First report of furuncular myiasis caused by the larva of botfly, Dermatobia hominis, in a Taiwanese traveler. Asian Pac J Trop Biomed 2013;3:229–31
  • Francesconi F, Lupi O. Myiasis. Clin Microbiol Rev 2012;25:79–105
  • Ravel S, de Meeus T, Dujardin JP, et al. The tsetse fly Glossina palpalis palpalis is composed of several genetically differentiated small populations in the sleeping sickness focus of Bonon, Cote d'Ivoire. Infect Genet Evol 2007;7:116–25
  • Cardoso Jda C, de Almeida MA, dos Santos E, et al. Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil, 2008. Emerg Infect Dis 2010;16:1918–24
  • Desquesnes M, Holzmuller P, Lai DH, et al. Trypanosoma evansi and surra: a review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. BioMed Res Intern 2013;2013:194176
  • Langley PA. Pathogen transmission in relation to feeding and digestion by haematophagous Arthropods. Acta Trop 1975;32:116–24
  • Dusbabek F, Soukupova A, Gregor F, Krejci J. The role of Hydrotaea armipes Fall. (Diptera, Muscidae) in the transmission of infectious bovine keratoconjunctivitis. Folia Parasitol 1982;29:79–83
  • Hillerton JE, Bramley AJ, Thomas G. The role of Hydrotaea irritans in the transmission of summer mastitis. Br Veterin J 1990;146:147–56
  • Hassan MU, Khan MN, Abubakar M, et al. Bovine hypodermosis – a global aspect. Trop Anim Health Prod 2010;42:1615–25
  • Brenner RJ, Wargo MJ. Observations on adult bionomics and larval ecology of Leptoconops torrens (Diptera: Ceratopogonidae) during an outbreak in the Coachella Valley of southern California, USA. J Med Entomol 1984;21:460–9
  • Calzada JE, Saldana A, Rigg C, et al. Changes in phlebotomine sand fly species composition following insecticide thermal fogging in a rural setting of Western panama. PLoS One 2013;8:e53289
  • Bech-Nielsen S, Sjogren U, Lundquist H. Parafilaria bovicola (Tubangui 1934) in cattle: epizootiology-disease occurrence. Am J Veterin Res 1982;43:945–7
  • Graczyk TK, Knight R, Tamang L. Mechanical transmission of human protozoan parasites by insects. Clin Microbiol Rev 2005;18:128–32
  • Vriesekoop F, Shaw R. The Australian bush fly (Musca vetustissima) as a potential vector in the transmission of foodborne pathogens at outdoor eateries. Foodborne Pathogens Dis 2010;7:275–9
  • Penner LR, Melnick JL. Methods for following the fate of infectious agents fed to single flies. J Experim Med 1952;96:273–80
  • Zapata S, Mejia L, Le Pont F, et al. A study of a population of Nyssomyia trapidoi (Diptera: Psychodidae) caught on the Pacific coast of Ecuador. Parasit Vectors 2012;5:144
  • Andreadis TG, Anderson JF, Vossbrinck CR, Main AJ. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999-2003. Vector Borne Zoonotic Dis 2004;4:360–78
  • Barker CM, Paulson SL, Cantrell S, Davis BS. Habitat preferences and phenology of Ochlerotatus triseriatus and Aedes albopictus (Diptera: Culicidae) in southwestern Virginia. J Med Entomol 2003;40:403–10
  • Azeredo-Espin AM, Madeira NG. Primary myiasis in dog caused by Phaenicia eximia (Diptera:Calliphoridae) and preliminary mitochondrial DNA analysis of the species in Brazil. J Med Entomol 1996;33:839–43
  • Mavale MS, Fulmali PV, Ghodke YS, et al. Experimental transmission of Chandipura virus by Phlebotomus argentipes (diptera: psychodidae). Am J Trop Med Hyg 2007;76:307–9
  • Jacob BG, Novak RJ, Toe LD, et al. Validation of a remote sensing model to identify Simulium damnosum s.l. breeding sites in Sub-Saharan Africa. PLoS Negl Trop Dis 2013;7:e2342
  • Chansang U, Mulla MS, Chantaroj S, Sawanpanyalert P. The eye fly Siphunculina funicola (Diptera: Chloropidae) as a carrier of pathogenic bacteria in Thailand. Southeast Asian J Trop Med Public Health 2010;41:61–71
  • Hornok S, Foldvari G, Elek V, et al. Molecular identification of Anaplasma marginale and rickettsial endosymbionts in blood-sucking flies (Diptera: Tabanidae, Muscidae) and hard ticks (Acari: Ixodidae). Vet Parasitol 2008;154:354–9
  • Aluja M, Ordano M, Guillen L, Rull J. Understanding long-term fruit fly (Diptera: Tephritidae) population dynamics: implications for areawide management. J Econ Entomol 2012;105:823–36
  • Core A, Runckel C, Ivers J, et al. A new threat to honey bees, the parasitic phorid fly Apocephalus borealis. PLoS One 2012;7:e29639
  • Jiang F, Li ZH, Deng YL, et al. Rapid diagnosis of the economically important fruit fly, Bactrocera correcta (Diptera: Tephritidae) based on a species-specific barcoding cytochrome oxidase I marker. Bull Entomol Res 2013;103:363–71
  • Karsten M, van Vuuren BJ, Barnaud A, Terblanche JS. Population genetics of Ceratitis capitata in South Africa: implications for dispersal and pest management. PLoS One 2013;8:e54281
  • Wharton RA, Trostle MK, Messing RH, et al. Parasitoids of medfly, Ceratitis capitata, and related tephritids in Kenyan coffee: a predominantly koinobiont assemblage. Bull Entomol Res 2000;90:517–26
  • Drosopoulou E, Nestel D, Nakou I, et al. Cytogenetic analysis of the Ethiopian fruit fly Dacus ciliatus (Diptera: Tephritidae). Genetica 2011;139:723–32
  • Lee JC, Bruck DJ, Curry H, et al. The susceptibility of small fruits and cherries to the spotted-wing drosophila, Drosophila suzukii. Pest Manag Sci 2011;67:1358–67
  • Wharton R, Ward L, Miko I. New neotropical species of Opiinae (Hymenoptera, Braconidae) reared from fruit-infesting and leaf-mining Tephritidae (Diptera) with comments on the Diachasmimorpha mexicana species group and the genera Lorenzopius and Tubiformopius. ZooKeys 2012:27–82
  • Strikis PC, Marsaro Junior AL, Adaime R, Lima CR. First report of infestation of cassava fruit, Manihot esculenta, by Neosilba perezi (Romero & Ruppell) (Lonchaeidae) in Brazil. Braz J Biol 2012;72:631–2
  • Thibout E, Pierre D, Mondy N, et al. Host-plant finding by the asparagus fly, Plioreocepta poeciloptera (Diptera: Tephritidae), a monophagous, monovoltine tephritid. Bull Entomol Res 2005;95:393–9
  • Cossentine J, Thistlewood H, Goettel M, Jaronski S. Susceptibility of preimaginal western cherry fruit fly, Rhagoletis indifferens (Diptera: Tephritidae) to Beauveria bassiana (Balsamo) Vuillemin clavicipitaceae (Hypocreales). J Invertebr Pathol 2010;104:105–9
  • Castrejon-Gomez VR, Aluja M, Arzuffi R, Villa P. Two low-cost food attractants for capturing Toxotrypana curvicauda (Diptera: Tephritidae) in the field. J Econ Entomol 2004;97:310–15
  • Boucher TJ, Ashley R, Durgy R, et al. Managing the pepper maggot (Diptera: Tephritidae) using perimeter trap cropping. J Econ Entomol 2003;96:420–32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.