15,790
Views
187
CrossRef citations to date
0
Altmetric
Review Article

Natural, semisynthetic and synthetic tyrosinase inhibitors

, &
Pages 1-13 | Received 29 Sep 2014, Accepted 18 Dec 2014, Published online: 16 Feb 2015

References

  • Gilchrest BA. Molecular aspects of tanning. J Invest Dermatol 2011;131:E14–17
  • Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004;84:1155–228
  • Slominski A, Zmijewski MA, Pawelek J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res 2011;25:14–27
  • Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature 2007;445:843–50
  • Gillbro JM, Olsson MJ. The melanogenesis and mechanisms of skin-lightening agents-existing and new approaches. Int J Cosmet Sci 2011;33:210–21
  • Lee CH, Wu SB, Hong CH, et al. Molecular mechanisms of UV-induced apoptosis and its effects on skin residential cells: the implication in UV-based phototherapy. Int J Mol Sci 2013;14:6414–35
  • Videira IF, Moura DF, Magina S. Mechanisms regulating melanogenesis. An Bras Dermatol 2013;88:76–83
  • Stratford MR, Ramsden CA, Riley PA. Mechanistic studies of the inactivation of tyrosinase by resorcinol. Bioorg Med Chem 2013;21:1166–73
  • Chang TS. Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials 2012;5:1661–85
  • Loizzo MR, Tundis R, Menichini F. Natural and synthetic tyrosinase inhibitors as antibrowning agents: an update. Compr Rev Food Sci Food Safety 2012;11:378–98
  • Thomas NV, Kim SK. Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 2013;11:146–64
  • Chang TS. An updated review of tyrosinase inhibitors. Int J Mol Sci 2009;10:2440–75
  • Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 2005;62:1707–23
  • Bourquelot E, Bertrand A. Le bleuissement et le noircissement des champignons. Comp Rend Soc Biol 1895;2:582–4
  • Ramsden CA, Riley PA. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg Med Chem 2014;22:2388–95
  • Liang CP, Chang CH, Liang CC, et al. In vitro antioxidant activities, free radical scavenging capacity, and tyrosinase inhibitory of Flavonoid compounds and ferulic acid from Spiranthes sinensis (Pers.) Ames. Molecules 2014;19:4681–94
  • Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry 2000;55:481–504
  • Kubo I, Kinst-Hori I, Chaudhuri SK, et al. Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem 2000;8:1749–55
  • Kubo I, Kinst-Hori I, Ishiguro K, et al. Tyrosinase inhibitory flavonoids from Heterotheca inuloides and their structural functions. Bioorg Med Chem Lett 1994;4:1443–6
  • Xie LP, Chen QX, Huang H, et al. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochemistry 2003;68:487–91
  • No JK, Soung DY, Kim YJ, et al. Inhibition of tyrosinase by green tea components. Life Sci 1999;65:PL241–6
  • Kim YJ. Rhamnetin attenuates melanogenesis by suppressing oxidative stress and pro-inflammatory mediators. Biol Pharm Bull 2013;36:1341–7
  • Zehng ZP, Tan HY, Chen J, Wang M. Characterization of tyrosinase inhibitors in the twigs of Cudrania tricuspidata and their structure-activity relationship study. Fitoterapia 2013;84:242–7
  • Denton CR, Lerner AB, Fitzpatrick TB. Inhibition of melanin formation by chemical agents. J Invest Dermatol 1952;18:119–35
  • Amer M, Metwalli M. Topical hydroquinone in the treatment of some hyperpigmentary disorders. Int J Dermatol 1998;37:449–50
  • Draelos ZD. Skin lightening preparations and the hydroquinone controversy. Dermatol Ther 2007;20:308–13
  • Findlay GH. Ochronosis following skin bleaching with hydroquinone. J Am Acad Dermatol 1982;6:1092–3
  • Wester RC, Melendres J, Hui X, et al. Human in vivo and in vitro hydroquinone topical bioavailability, metabolism, and disposition. J Toxicol Environ Health A 1998;54:301–17
  • Sarkar R, Arora P, Garg KV. Cosmeceuticals for hyperpigmentation: what is available? J Cutan Aesthet Surg 2013;6:4–11
  • Parejo I, Viladomat F, Bastida J, Codina C. A single extraction step in the quantitative analysis of arbutin in bearberry (Arctostaphylos uva-ursi) leaves by high-performance liquid chromatography. Phytochem Anal 2001;12:336–9
  • Seo DH, Jung JH, Lee JE, et al. Biotechnological production of arbutins (α- and β-arbutins), skin-lightening agents, and their derivatives. Appl Microbiol Biotechnol 2012;95:1417–25
  • Garcia A, Fulton JE. The combination of glycolic acid and hydroquinone or kojic acid for the treatment of melasma and related conditions. Dermatol Surg 1996;22:443–7
  • Jin YH, Lee SJ, Chung MH, et al. Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism. Arch Pharm Res 1999;22:232–6
  • Boissy RE, Visscher M, DeLong MA. Deoxyarbutin: a novel reversible tyrosinase inhibitor with effective in vivo skin lightening potency. Exp Dermatol 2005;14:601–8
  • Chawla S, deLong MA, Visscher MO, et al. Mechanism of tyrosinase inhibition by deoxyArbutin and its second-generation derivatives. Br J Dermatol 2008;159:1267–74
  • Draelos ZD. Cosmetic therapy. In: Wolverton SE. ed. Comprehensive dermatologic drug therapy. 2nd ed. Philadelphia (PA): Saunders; 2007:P761–74
  • Fleischer AB, Schwartzel EH, Colby SI, Altman DJ. The combination of 2% 4-hydroxyanisole (Mequinol) and 0.01% tretinoin is effective in improving the appearance of solar lentigines and related hyperpigmented lesions in two double-blind multicenter clinical studies. J Am Acad Dermatol 2000;42:459–67
  • Colby SI, Schwartzel EH, Huber FJ, et al. A promising new treatment for solar lentigines. J Drugs Dermatol 2003;2:147–52
  • Batovska DI, Todorova IT. Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol 2010;5:1–29
  • Sahu NK, Balbhadra SS, Choudhary J, Kohli DV. Exploring pharmacological significance of chalcone scaffold: a review. Curr Med Chem 2014;19:209–25
  • Fu B, Li H, Wang X, et al. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J Agric Food Chem 2005;53:7408–14
  • Kim SJ, Son KH, Chang HW, et al. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biol Pharm Bull 2003;26:1348–50
  • Hyun SK, Lee WH, Jeong M, et al. Inhibitory effects of kurarinol, kuraridinol, and trifolirhizin from Sophora flavescens on tyrosinase and melanin synthesis. Biol Pharm Bull 2008;31:154–8
  • Zhang X, Hu X, Hou A, Wang H. Inhibitory effect of 2,4,2′,4′-tetrahydroxy-3-(3-methyl-2-butenyl)-chalcone on tyrosinase activity and melanin biosynthesis. Biol Pharm Bull 2009;32:86–90
  • Nerya O, Musa R, Khatib S, et al. Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 2004;65:1389–95
  • Khatib S, Nerya O, Musa R, et al. Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety. Bioorg Med Chem 2005;13:433–41
  • Jun N, Hong G, Jun K. Synthesis and evaluation of 2′,4′,6′-trihydroxychalcones as a new class of tyrosinase inhibitors. Bioorg Med Chem 2007;15:2396–402
  • Nguyen NT, Nguyen MH, Nguyen HX, et al. Tyrosinase inhibitors from the Wood of Atrocarpus heterophyllus. J Nat Prod 2012;75:1951–5
  • Cho SJ, Roh JS, Sun WS, et al. N-Benzylbenzamides: a new class of potent tyrosinase inhibitors. Bioorg Med Chem Lett 2006;16:2682–4
  • Baek HS, Hong YD, Lee CS, et al. Adamantyl N-benzylbenzamide: new series of depigmentation agents with tyrosinase inhibitory activity. Bioorg Med Chem Lett 2012;22:2110–13
  • Wu Z, Zheng L, Li Y, et al. Synthesis and structure-activity relationships and effects of phenylpropanoid amides of octopamine and dopamine on tyrosinase inhibition and antioxidation. Food Chem 2012;134:1128–31
  • Fang Y, Chen Y, Feng G, Ma L. Benzyl benzoates: new phlorizin analogs as mushroom tyrosinase inhibitors. Bioorg Med Chem 2011;19:1167–71
  • Bandgar BP, Adsul LK, Chavan HV, et al. Synthesis, biological evaluation, and molecular docking of N-{3-[3-(9-methyl-9H-carbazol-3-yl)-acryloyl]-phenyl}-benzamide/amide derivatives as xanthine oxidase and tyrosinase inhibitors. Bioorg Med Chem 2012;20:5649–57
  • Likhitwitayawuid K. Stilbenes with tyrosinase inhibitory activity. Curr Sci India 2008;94:44–53
  • Aggarwal BB, Bhardwaj A, Aggarwal RS, et al. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004;24:2783–840
  • Shin NH, Ryu SY, Choi EJ, et al. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem Biophys Res Commun 1998;243:801–3
  • Shimizu K, Kondo R, Sakai K, et al. The inhibitory components from Artocarpus incisus on melanin biosynthesis. Planta Med 1998;64:408–12
  • Likhitwitayawuid K, Sritularak B. A new dimeric stilbene with tyrosinase inhibitory activity from Artocarpus gomezianus. J Nat Prod 2001;64:1457–9
  • Ohguchi K, Tanaka T, Ito T, et al. Inhibitory effects of resveratrol derivatives from Dipterocarpaceae plants on tyrosinase activity. Biosci Biotechnol Biochem 2003;67:1587–9
  • Likhitwitayawuid K, Sornsute A, Sritularak B, Ploypradith P. Chemical transformations of oxyresveratrol (trans-2,4,3′,5′-tetrahydroxystilbene) into a potent tyrosinase inhibitor and a strong cytotoxic agent. Bioorg Med Chem Lett 2006;16:5650–3
  • Ohguchi K, Tanaka K, Kido T, et al. Effects of hydroxystilbene derivatives on tyrosinase activity. Biochem Biophys Res Commun 2003;307:861–3
  • Choi SY, Kim S, Kim H, et al. (4-Methoxy-benzylidene)-(3-methoxy-phenyl)-amine, a nitrogen analog of stilbene as a potent inhibitor of melanin production. Chem Pharm Bull 2002;50:450–2
  • Song S, Lee H, Jin Y, et al. Syntheses of hydroxy substituted 2-phenyl-naphthalenes as inhibitors of tyrosinase. Bioorg Med Chem Lett 2007;17:461–4
  • Bae SJ, Ha YM, Kim JA, et al. A Novel Synthesized Tyrosinase Inhibitor: (E)-2-((2,4-Dihydroxyphenyl)diazenyl)phenyl 4-methylbenzenesulfonate as an azo-Resveratrol Analog. Biosci Biotechnol Biochem 2013;77:65–72
  • Bae SJ, Ha YM, Park YJ, et al. Design, synthesis, and evaluation of (E)-N-substituted benzylidene-aniline derivatives as tyrosinase inhibitors. Eur J Med Chem 2012;57:383–90
  • Song YM, Ha YM, Kim JA, et al. Synthesis of novel azo-resveratrol, azo-oxyresveratrol and their derivatives as potent tyrosinase inhibitors. Bioorg Med Chem Lett 2012;22:7451–5
  • Kolbe L, Mann T, Gerwat W, et al. Stab F, 4-n-butylresorcinol, a highly effective tyrosinase inhibitor of the topical treatment of hyperpigmentation. JEADV 2013;27:19–23
  • Burdock GA, Soni MG, Carabin IG. Evaluation of health aspects of kojic acid in food. Regul Toxicol Pharmacol 2001;33:80–101
  • Bentley R. From miso, sake and shoyu to cosmetics: a century of science for kojic acid. Nat Prod Rep 2006;23:1046–62
  • Kahn V, Ben-Shalom N, Zakin V. Effect of kojic acid on the oxidation of N-acetyldopamine by mushroom tyrosinase. J Agric Food Chem 1997;45:4460–5
  • Lajis AF, Hamid M, Ariff AB. Depigmenting effect of kojic acid esters in hyperpigmented B16F1 melanoma cells. J Biomed Biotech 2012;2012:952452
  • Tomita I, Mitsuhashi K, Endo T. Synthesis and radical polymerization of styrene derivative bearing Kojic acid moieties. J Polym Sci A1 1996;34:271–6
  • Molenda JJ, Basinger MA, Hanusa TP, Jones MM. Synthesis and iron (III) binding properties of 3-hydroxypyrid-4-ones derived from Kojic acid. J Inorg Biochem 1994;55:131–46
  • Kim H, Choi J, Cho JK, et al. Solid-phase synthesis of kojic acid-tripeptides and their tyrosinase inhibitory activity, storage stability, and toxicity. Bioorg Med Chem Lett 2004;14:2843–6
  • Saghaie L, Pourfarzam M, Fassihi A, Sartippour B. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid. Res Pharm Sci. 2013;8:233–42
  • Rho HS, Baek HS, Ahn SM, et al. Synthesis of new anti-melanogenic compounds containing two molecules of kojic acid. Bull Kor Chem Soc 2008;29:1569–71
  • Noh JM, Kwak SY, Seo HS, et al. Kojic acid-amino acid coujugates as tyrosinase inhibitors. Bioorg Med Chem Lett 2009;19:5586–9
  • Li DF, Hu PP, Liu MS, et al. Design and synthesis of hydroxypyridinone-L-phenylalanine conjugates as potential tyrosinase inhibitors. J Agric Food Chem 2013;61:6597–603
  • Jones K, Hughes J, Hong M, et al. Modulation of melanogenesis by aloesin: a competitive inhibitor of tyrosinase. Pigment Cell Res 2002;15:335–40
  • Choi S, Lee SK, Kim JE, et al. Aloesin inhibits hyperpigmentation induced by UV radiation. Clin Exp Dermatol 2002;27:513–15
  • Bubols GB, Vianna DR, Medina-Remon A, et al. The antioxidant activity of coumarins and flavonoids. Mini Rev Med Chem 2013;13:318–34
  • Masamoto Y, Ando H, Murata Y, et al. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Biosci Biotechnol Biochem 2003;67:631–4
  • Piao XL, Baek SH, Park MK, Park JH. Tyrosinase-inhibitory furanocoumarin from Angelica dahurica. Biol Pharm Bull 2004;27:1144–6
  • Ahmad VU, Ullah F, Hussain J, et al. Tyrosinase inhibitors from Rhododendron collettianum and their structure-activity relationship (SAR) studies. Chem Pharm Bull 2004;52:1458–61
  • Luceri C, Giannini L, Lodovici M, et al. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br J Nutr 2007;97:458–63
  • Lee HS, Shin KH, Ryu GS, et al. Synthesis of small molecule-peptide conjugates as potential whitening agents. Bull Korean Chem Soc 2012;33:3004–8
  • Duckworth HW, Coleman JE. Physicochemical and kinetic properties of mushroom tyrosinase. J Biol Chem 1970;245:1613–25
  • Maghsoudi S, Adibi H, Hanzeh M, et al. Kinetic of mushroom tyrosinase inhibition by benzaldehyde derivarives. J Rep Pharm Sci 2013;2:156–64
  • Kubo I, Chen QX, Nihei K, et al. Tyrosinase inhibition kinetics of anisic acid. Z Naturforsch C 2003;58:713–18
  • Ha TJ, Tamura S, Kubo I. Effects of mushroom tyrosinase on anisaldehyde. J Agric Food Chem 2005;53:7024–8
  • Shi Y, Chen QX, Wang Q, et al. Inhibitory effects of cinnamic acid and its derivatives on the diphenolase activity of mushroom (Agaricus bisporus) tyrosinase. Food Chem 2005;92:707–12
  • Lee HS. Tyrosinase inhibitors of Pulsatilla cernua root-derived materials. J Agric Food Chem 2002;50:1400–3
  • Miyazawa M, Oshima T, Koshino K, et al. Tyrosinase inhibitor from black rice bran. J Agric Food Chem 2003;51:6953–6
  • Kubo I, Kinst-Hori I. Tyrosinase inhibitors from cumin. J Agric Food Chem 1998;46:5338–41
  • Conrad JS, Dawso SR, Hubbard ER, et al. Inhibitor binding to the binuclear active site of tyrosinase: temperature, pH and solvent deuterium isotope effects. Biochemistry 1994;33:5739–44
  • Kubo I, Kinst-Hori I, Kubo Y, et al. Molecular design of antibrowning agents. J Agric Food Chem 2000;48:1393–9
  • Jeon HJ, Noda M, Maruyama M, et al. Identification and kinetic study of tyrosinase inhibitors found in sake lees. J Agric Food Chem 2006;54:9827–33
  • Magid AA, Voutguenne-Nazabadioko L, Bontemps G, et al. Tyrosinase inhibitors and sesquiterpene diglycosides from Guioa villosa. Planta Med 2008;74:55–60
  • Masuda T, Odaka Y, Ogawa N, et al. Identification of geranic acid, a tyrosinase inhibitor in lemongrass (Cymbopogon citratus). J Agric Food Chem 2008;56:597–601
  • Sabudak T, Khan HTM, Choudhary MI, Oksuz S. Potent tyrosinase inhibitors from Trifolium Balansae. Nat Prod Res 2006;20:665–70
  • Khan MT, Khan SB, Ather A. Tyrosinase inhibitory cycloartane type triterpenoids from the methanol extract of the whole plant of Amberboa ramosa Jafri and their structure-activity relationship. Bioorg Med Chem 2006;14:938–43
  • Ullah F, Hussain H, Hussain J, et al. Tyrosinase inhibitory pentacyclic triterpenes and analgesic and spasmolytic activities of methanol extracts of Rhododendron collettianum. Phytother Res 2007;21:1076–81
  • Leu YL, Hwang TL, Hu JW, Fang JY. Anthraquinones from Polygonum cuspidatum as tyrosinase inhibitors for dermal use. Phytother Res 2008;22:552–6
  • Devkota KP, Khan MT, Ranjit R, et al. Tyrosinase inhibitory and antileishmanial constituents from the rhizomes of Paris polyphylla. Nat Prod Res 2007;21:321–7
  • Azhar-Ul-Haq, Malik A, Khan MT, et al. Tyrosinase inhibitory lignans from the methanol extract of the roots of Vitex negundo Linn, and their structure-activity relationship. Phytomedicine 2006;13:255–60
  • Wang HM, Chen CY, Chen CY, et al. (−)-N-Formylanonaine from Michelia alba as a human tyrosinase inhibitor and antioxidant. Bioorg Med Chem 2010;18:5241–7
  • Wu B, Zhang X, Wu X. New lignan glucosides with tyrosinase inhibitory activities from exocarp of Castanea henryi. Carbohydr Res. 2012;355:45–9
  • Akihisa T, Orido M, Akazawa H, et al. Melanogenesis-inhibitory activity of aromatic glycosides from the stem bark of Acer buergerianum. Chem Biodivers 2013;10:167–75
  • Hashim NM, Rahmani M, Ee GC, et al. Antioxidant, antimicrobial and tyrosinase inhibitory activities of xanthones isolated from Artocarpus obtusus F.M. Jarrett. Molecules 2012;17:6071–82
  • Criton M, Le Mellay-Hamon V. Analogues of N-hydroxy-N′-phenylthiourea and N-hydroxy-N′-phenylurea as inhibitors of tyrosinase and melanin formation. Bioorg Med Chem Lett 2008;18:3607–10
  • Shiino M, Watanabe Y, Umezawa K. Synthesis of N-substituted N-nitrosohydroxylamines as inhibitors of mushroom tyrosinase. Bioorg Med Chem 2001;9:1233–40
  • Khan KM, Maharvi GM, Perveen S, et al. Synthesis of methyl ether analogues of sildenafil (Viagra) possessing tyrosinase inhibitory potential. Chem Biodivers 2005;2:470–6
  • Khan MT, Choudhary MI, Khan KM, et al. Structure-activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues. Bioorg Med Chem 2005;13:3385–95
  • Khan KM, Mughal UR, Khan MT, et al. Oxazolones: new tyrosinase inhibitors; synthesis and their structure-activity relationships. Bioorg Med Chem 2006;14:6027–33
  • Khan KM, Maharvi GM, Khan MT, et al. Tetraketones: a new class of tyrosinase inhibitors. Bioorg Med Chem 2006;14:344–51
  • Kim YJ, No JK, Lee JH, Chung HY. 4,4′-Dihydroxybiphenyl as a new potent tyrosinase inhibitor. Biol Pharm Bull 2005;28:323–7
  • Lee KH, Koketsu M, Choi SY, et al. Potent inhibitory effects of N-aryl S-alkylthiocarbamate derivatives on the dopa oxidase activity of mushroom tyrosinase. Chem Pharm Bull 2005;53:747–9
  • Lam KW, Syahida A, Ul-Haq Z, et al. Synthesis and biological activity of oxadiazole and triazolothiadiazole derivatives as tyrosinase inhibitors. Bioorg Med Chem Lett 2010;20:3755–9
  • Ha YM, Park YJ, Lee JY, et al. Design, synthesis and biological evaluation of 2-(substituted phenyl)thiazolidine-4-carboxylic acid derivatives as novel tyrosinase inhibitors. Biochimie 2012;94:533–40
  • Chen LH, Hu YH, Song W, et al. Synthesis and antityrosinase mechanism of benzaldehyde thiosemicarbazones: novel tyrosinase inhibitors. J Agric Food Chem 2012;60:1542–7
  • Lee KC, Thanigaimalai P, Sharma VK, et al. Structural characteristics of thiosemicarbazones as inhibitors of melanogenesis. Bioorg Med Chem Lett 2010;20:6794–6
  • Yi W, Dubois C, Yahiaoui S, et al. Refinement of arylthiosemicarbazone pharmacophore in inhibition of mushroom tyrosinase. Eur J Med Chem 2011;46:4330–5
  • Yi W, Cao R, Chen Z, et al. Rational design and synthesis of 4-O-substituted phenylmethylenethiosemicarbazones as novel tyrosinase inhibitors. Chem Pharm Bull 2010;58:752–4
  • Yi W, Cao R, Peng W, et al. Synthesis and biological evaluation of novel 4-hydroxybenzaldehyde derivatives as tyrosinase inhibitors. Eur J Med Chem 2010;45:639–46
  • Delogu G, Podda G, Corda M, et al. Synthesis and biological evaluation of a novel series of bis-salicylaldehydes as mushroom tyrosinase inhibitors. Bioorg Med Chem Lett 2010;20:6138–40
  • Pan ZZ, Li HL, Yu XJ, et al. Synthesis and antityrosinase activities of alkyl 3,4-dihydroxybenzoates. J Agric Food Chem 2011;59:6645–9
  • Sonmez F, Sevmezler S, Atahan A, et al. Evaluation of new chalcone derivatives as polyphenol oxidase inhibitors. Bioorg Med Chem Lett 2011;21:7479–82
  • Matos MJ, Santana L, Uriarte E, et al. New halogenated phenylcoumarins as tyrosinase inhibitors. Bioorg Med Chem Lett 2011;21:3342–5
  • Du ZY, Jiang YF, Tang ZK, et al. Antioxidation and tyrosinase inhibition of polyphenolic curcumin analogs. Biosci Biotechnol Biochem 2011;75:2351–8
  • Hosoya T, Nakata A, Yamasaki F, et al. Curcumin-like diarylpentanoid analogues as melanogenesis inhibitors. J Nat Med 2012;66:166–76
  • Tajima R, Oozeki H, Muraoka S, et al. Synthesis and evaluation of bibenzyl glycosides as potent tyrosinase inhibitors. Eur J Med Chem 2011;46:1374–81
  • Ha YM, Kim JA, Park YJ, et al. Analogs of 5-(substituted benzylidene)hydantoin as inhibitors of tyrosinase and melanin formation. Biochim Biophys Acta 2011;1810:612–19
  • Liu J, Wu F, Chen L, et al. Evaluation of dihydropyrimidin-(2H)-one analogues and rhodanine derivatives as tyrosinase inhibitors. Bioorg Med Chem Lett 2011;21:2376–9
  • Yan Q, Cao R, Yi W, et al. Inhibitory effects of 5-benzylidene barbiturate derivatives on mushroom tyrosinase and their antibacterial activities. Eur J Med Chem 2009;44:4235–43
  • Han YK, Park YJ, Ha YM, et al. Characterization of a novel tyrosinase inhibitor, (2RS,4R)-2-(2,4-dihydroxylphenyl) thiazolidine-4-carboxylic acid (MHY384). Biochim Biophys Acta 2012;1820:542–9
  • Park JW, Ha YM, Moon KM, Kim SR. De novo tyrosinase inhibitor: 4-(6,7-dihydro-5H-indeno[5,6-d]thiazol-2-yl)benzene-1,3-diol(MHY1556). Bioorg Med Chem Lett 2013;23:4172–6
  • Gencer N, Demir D, Sonmez F, Kucukislamoglu M. New saccharin derivatives as tyrosinase inhibitors. Bioorg Med Chem 2012;20:2811–21
  • Bao K, Dai Y, Zhu ZB, et al. Design and synthesis of biphenyl derivatives as mushroom tyrosinase inhibitors. Bioorg Med Chem 2010;18:6708–14
  • Hamidian H, Tagizadeh R, Fozooni S, et al. Synthesis of novel azo compounds containing 5(4H)-oxazolone ring as potent tyrosinase inhibitors. Bioorg Med Chem 2013;21:2088–92
  • Zhou Z, Zhuo J, Yan S, Ma L. Design and synthesis of 3,5-diaryl-4,5-dihydro-1H-pyrazoles as new tyrosinase inhibitors. Bioorg Med Chem 2013;21:2156–62
  • Lam KW, Syahida A, Ul-Haq Z, et al. Synthesis and biological activity of oxadiazole and triazolothiadiazole derivatives as tyrosinase inhibitor. Bioorg Med Chem Lett 2010;20:3755–9
  • Song J, Lee HE, Kim YJ, et al. Discovery of small molecules that inhibit melanogenesis via regulation of tyrosinase expression. Bioorg Med Chem Lett 2012;22:6943–6
  • Akazawa H, Akihisa T, Taguchi Y, et al. Melanogenesis inhibitory and free radical scavenging activities of diarylheptanoids and other phenolic compounds from the bark of Acer nikoense. Biol Pharm Bull 2006;29:1970–2
  • Ito S, Ojika M, Yamashita T, Wakamatsu K. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity. Pigment Cell Melanoma Res 2014;27:744–53
  • Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 1984;81:1327–31
  • Ito S, Gerwat W, Kolbe L, et al. Human tyrosinase is able to oxidize both enantiomers of rhododendrol. Pigment Cell Melanoma Res 2014;27:1149–53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.