1,680
Views
9
CrossRef citations to date
0
Altmetric
Short Communication

Establishment of an effective TLC bioautographic method for the detection of Mycobacterium tuberculosis H37Ra phosphoglucose isomerase inhibition by phosphoenolpyruvate

, , &
Pages 1712-1717 | Received 11 Aug 2015, Accepted 27 Jan 2016, Published online: 17 Mar 2016

References

  • Meena LS. Rajni. Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS J 2010;277:2416–27
  • World Health Organization. Global tuberculosis report 2014. Geneva, Switzerland; 2014:14
  • Davies C, Muirhead H, Chirgwin J. The structure of human phosphoglucose isomerase complexed with a transition-state analogue. Acta Crystallogr D Biol Crystallogr 2003;59:1111–13
  • Mathur D, Garg LC. Functional phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv: rapid purification with high yield and purity. Protein Expr Purif 2007;52:373–8
  • Anand K, Mathur D, Anant A, Garg LC. Structural studies of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010;66:490–7
  • Tuckman D, Donnelly RJ, Zhao FX, et al. Interruption of the phosphoglucose isomerase gene results in glucose auxotrophy in Mycobacterium smegmatis. J Bacteriol 1997;179:2724–30
  • Mathur D, Ahsan Z, Tiwari M, Garg LC. Biochemical characterization of recombinant phosphoglucose isomerase of Mycobacterium tuberculosis. Biochem Biophys Res Commun 2005;337:626–32
  • Hasan MR, Rahman M, Jaques S, et al. Glucose 6-phosphate accumulation in Mycobacteria: implications for a novel F420-dependent anti-oxidant defense system. J Biol Chem 2010;285:19135–44
  • Choma IM, Jesionek W. TLC-direct bioautography as high throughput method for detection of antimicrobials in plants. Chromatography 2015;2:225–38
  • Marston A. Thin-layer chromatography with biological detection in phytochemistry. J Chromatogr A 2011;1218:2676–83
  • Dewanjee S, Gangopadhyay M, Bhattabharya N, et al. Bioautography and its scope in the field of natural product chemistry. J Pharm Anal 2015;5:75–84
  • Marston A, Kissling J, Hostettmann K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem Anal 2002;13:51–4
  • Mroczek T, Mazurek J. Pressurized liquid extraction and anticholinesterase activity-based thin-layer chromatography with bioautography of Amaryllidaceae alkaloids. Anal Chim Acta 2009;633:188–96
  • Zheng X-Y, Zhang Z-J, Chou G-X, et al. Acetylcholinesterase inhibitive activity-guided isolation of two new alkaloids from seeds of Peganum nigellastrum Bunge by an in vitro TLC-bioautographic assay. Arch Pharm Res 2009;32:1245–51
  • Benamar H, Rached W, Derdour A, Marouf A. Screening of Algerian medicinal plants for acetylcholinesterase inhibitory activity. J Biol Sci 2010;10:1–9
  • Wszelaki N, Kociun A, Kiss AK. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm 2010;60:119–28
  • Adhami H-R, Farsam H, Krenn L. Screening of medicinal plants from Iranian traditional medicine for acetylcholinesterase inhibition. Phytother Res 2011;25:1148–52
  • Bhadra S, Mukherjee PK, Bandyopadhyay A. Cholinesterase inhibition activity of Marsilea quadrifolia Linn. an edible leafy vegetable from West Bengal, India. Nat Prod Res 2012;26:1519–22
  • Cabral RS, Sartori MC, Cordeiro I, et al. Anticholinesterase activity evaluation of alkaloids and coumarin from steams of Cochocarpus fontanesianus. Braz J Pharmacogn 2012;22:374–80
  • Adhami H-R, Lutz J, Kählig H, et al. Compounds from gum ammoniacum with acetylcholinesterase inhibitory activity. Sci Pharm 2013;81:793–805
  • Kongkiatpaiboon S, Rojsanga P, Pattarajinda V, Gritsanapan W. Acetylcholinesterase inhibitory activity of didehydrostemofoline, stemofoline alkaloids and extracts from Stemona collinsiae Craib roots. Pharmacognosy J 2013;5:56–9
  • Dalai MK, Bhadra S, Chaudhary SK, et al. Anti-cholinesterase potential of Cinnamomum tamala (Buch.-Ham.) T.Ness & Eberm leaves. Indian J Tradit Know 2014;13:691–7
  • Dalai MK, Bhadra S, Chaudhary SK, et al. Anticholinesterase activity of Cinnamomum zeylanicum L. leaf extract. TANG Human Med 2014;4:21–6
  • Pandey S, Sree A, Sehti DP, et al. A marine sponge associated strain of Bacillus subtilis and other marine bacteria can produce anticholinesterase compounds. Microb Cell Fact 2014;13:24
  • Silva NNS, Silva JRA, Alves CN, et al. Acetylcholinesterase inhibitory activity and molecular docking study of 1-nitro-2-phenylethane, the main constituent of Aniba canelilla essential oil. Chem Biol Drug Des 2014;84:192–8
  • Ramallo A, Salazar MO, Furlan RLE. Thin layer chromatography-autography-high resolution mass spectrometry analysis: accelerating the identification of acetylcholinesterase inhibitors. Phytochem Anal 2015;26:404–12
  • Wszelaki N, Paradowska K, Jamróz MK, et al. Bioactivity-guided fractionation for the butyrylcholinesterase inhibitory activity of furanocoumarins from Angelica archangelica L. roots and fruits. J Agric Food Chem 2011;59:9186–93
  • Gu LH, Liao LP, Hu HJ, et al. A thin-layer chromatography-bioautographic method for detecting dipeptidyl peptidase IV inhibitors in plants. J Chromatogr A 2015;1411:116–22
  • Camara MA, Tian M, Yang L, Wang S. Application of thin-layer chromatography in enzyme activity and inhibitors studies of glucose-6-phosphate dehydrogenase. J Planar Chromatogr-Modern TLC 2015;28:326–33
  • Salazar MO, Furlan RLE. A rapid TLC autographic method for the detection of glucosidase inhibitors. Phytochem Anal 2007;18:209–12
  • Simões-Pires CA, Hmicha B, Marston A, Hostettmann K. A TLC bioautographic method for the detection of α- and β-glucosidase inhibitors in plant extracts. Phytochem Anal 2009;20:511–15
  • Verma N, Behera BC, Sharma BO. Glucosidase inhibitory and radical scavenging properties of Lichen metabolites salazinic acid, sekikkaic acid and usnic acid. Hacettepe J Biol Chem 2012;40:7–21
  • Pandey S, Sree A, Dash SS, Sehti DP. A novel method for screening beta-glucosidase inhibitors. BMC Microbiol 2013;13:55
  • Yang Y, Gu L, Xiao Y, et al. Rapid identification of α-glucosidase inhibitors from Phlomis tuberosa by Sepbox chromatography and thin-layer chromatography bioautography. PLoS One 2015;10:e0116922
  • Hassan AMS. TLC bioautographic method for detecting lipase inhibitors. Phytochem Anal 2012;23:405–7
  • Bayineni VK, Suresh S, Singh G, Kadappagari R-K. Development of a bioautographic method for the detection of lipase inhibitors. Biochem Biophys Res Commun 2014;453:784–6
  • Tang J, Zhou J, Tang Q, et al. A new TLC bioautographic assay for qualitative and quantitative estimation of lipase inhibitors. Phytochem Anal 2016;27:5–12
  • Liang JB, Yang ZD, Shu ZM, Yu CC. A rapid thin-layer chromatography bioautographic method for detecting the monoamine oxidase inhibitors in plants. Nat Prod Res 2014;28:1318–21
  • Zarmouh NO, Mazzio EA, Elshami FM, et al. Evaluation of the inhibitory effects of bavachinin and bavachin on human monoamine oxidases A and B. Evid Based Complement Alternat Med 2015;2015:852194. doi:10.1155/2015/852194
  • Patil A, Patil S, Mahure S, Kale A. UV, FTIR, HPLC confirmation of camptothecin an anticancer metabolite from bark extract of Nothapodytes nimmoniana (J. Graham). Am J Ethnomed 2014;1:174–85
  • Wangthong S, Tonsiripakdee J, Monhaphol T, et al. Post TLC developing technique for tyrosinase inhibitor detection. Biomed Chromatogr 2007;21:94–100
  • Kamagaju L, Morandini R, Bizuru E, et al. Tyrosinase modulation by five Rwandese herbal medicines traditionally used for skin treatment. J Ethnopharmacol 2013;146:824–34
  • García P, Furlan RLE. Multiresponse optimisation applied to the development of a TLC autography for the detection of tyrosinase inhibitors. Phytochem Anal 2015;26:287–92
  • Ramallo A, Zacchino SA, Furlan RLE. A rapid TLC autographic method for the detection of xanthine oxidase inhibitors and superoxide scavengers. Phytochem Anal 2006;17:15–19
  • Paradowska K, Lutek J, Ginalska G. A rapid detection for the inhibition of phosphoglucose isomerase from Escherichia coli by mercury(II) chloride based on TLC-autographic analysis – preliminary studies. Curr Issues Pharm Med Sci 2014;27:127–30
  • Fraenkel DG, Levisohn SR. Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J Bacteriol 1967;93:1571–8
  • Lowry OH, Rosebrough NR, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–75
  • Amir A, Rana K, Arya A, et al. Mycobacterium tuberculosis H37Rv: in silico drug targets identification by metabolic pathways analysis. Int J Evol Biol 2014;2014:284170. doi:10.1155/2014/284170
  • Singhal N, Sharma P, Kumar M, et al. Analysis of intracellular expressed proteins of Mycobacterium tuberculosis clinical isolates. Proteome Sci 2012;10:14
  • Olive C, Geroch ME, Levy HR. Glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides. J Biol Chem 1971;246:2047–57
  • Singh S, Anand A, Srivastava PK. Regulation and properties of glucose-6-phosphate dehydrogenase: a review. Int J Plant Physiol Biochem 2012;4:1–19
  • Scopes RK. Allosteric control of Zymomonas mobilis glucose-6-phosphate dehydrogenase by phosphoenolpyruvate. Biochem J 1997;326:731–5
  • Anderson BM, Wise DJ, Anderson CD. Azotobacter vinelandii glucose-6-phosphate dehydrogenase properties of NAD- and NADP-linked reactions. Biochim Biophys Acta 1997;1340:268–76
  • Asensio C, Levoin N, Guillaume C, et al. Irreversible inhibition of glucose-6-phosphate dehydrogenase by the coenzyme A conjugate of ketoprofen: a key to oxidative stress induced by non-steroidal anti-inflammatory drugs? Biochem Pharmacol 2007;73:405–16
  • Takama M, Nosoh Y. Effect of ATP on glucose-6-phosphate isomerase from Bacillus caldotenax. Biochim Biophys Acta 1982;705:127–30
  • Ogawa T, Mori H, Tomita M, Yoshino M. Inhibitory effect of phosphoenolpyruvate on glycolytic enzymes in Escherichia coli. Res Microbiol 2007;158:159–63

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.