1,153
Views
23
CrossRef citations to date
0
Altmetric
Research Article

3,6-Diazaphenothiazines as potential lead molecules – synthesis, characterization and anticancer activity

, , , , &
Pages 1512-1519 | Received 24 Nov 2015, Accepted 01 Feb 2016, Published online: 07 Mar 2016

References

  • Cancer Facts and Figures, American Cancer Society, 2013. Available from: http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-036845.pdf [last accessed 18 Aug 2015]
  • Bray F, Ren J-S, Masuyer E, Ferlay J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer 2013;32:1133–45.
  • Bajaj S, Asati V, Singh J, Roy PP. 1,3,4-Oxadiazoles: an emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. Eur J Med Chem 2015;97:124–41.
  • Yugandhar D, Nayak VL, Archana S, et al. Design, synthesis and anticancer properties of novel oxa/azaspiro[4,5]trienones as potent apoptosis inducers through mitochondrial disruption. Eur J Med Chem 2015;101:348–57.
  • Gupta RR, Kumar M. Synthesis, properties and reactions of phenothiazines. In: Gupta RR, ed. Phenothiazine and 1,4-benzothiazines – chemical and biological aspect. Amsterdam: Elsevier; 1988:1–161.
  • Motohashi N, Kawase M, Saito S, Sakagami H. Antitumor potential and possible targets of phenothiazine-related compounds. Curr Drug Targets 2000;1:237–45.
  • Motohashi N, Kawase M, Satoh K, Sakagami H. Cytotoxic potential of phenothiazines. Curr Drug Targets 2006;7:1055–66.
  • Mitchell SC. Phenothiazine: the parent molecule. Curr Drug Targets 2006;7:1181–9.
  • Dasgupta A, Dastridara SG, Shirataki Y, Motohashi N. Antibacterial activity of artificial phenothiazines and isoflavones from plants. Top Heterocycl Chem 2008;1567–132.
  • Aaron JJ, Gaye Seye MD, Trajkovska S, Motohashi N. Bioactive phenothiazines and benzo[a]phenothiazines: spectroscopic studies and biological and biomedical properties and applications. Top Heterocycl Chem 2009;16:153–231.
  • Sudeshna G, Parimal K. Multiple non-psychiatric effects of phenothiazines: a review. Eur J Pharmacol 2010;648:6–14.
  • Pluta K, Morak-Młodawska B, Jeleń M. Recent progress in biological activities of synthesized phenothiazines. Eur J Med Chem 2011;46:3179–89.
  • Wesołowska O. Interaction of phenothiazines, stilbenes and flavonoids with multidrug resistance-associated transporters, P-glycoprotein and MRP1. Acta Biochim Polon 2011;58:433–48.
  • Jaszczyszyn A, Gąsiorowski K, Świątek P, et al. Chemical structure of phenothiazines and their biological activity. Pharmacol Rep Rep 2012;64:16–23.
  • Viveiros M, Martins M, Couto I, et al. The in vitro activity of phenothiazines against Mycobacterium avium: potential of thioridazine for therapy of the co-infected AIDS patient. In Vivo 2005;19:733–6.
  • Mosnaim AD, Ranade VV, Wolf ME, et al. Phenothiazine molecule provides the basic chemical structure for various classes of pharmacotherapeutic agents. Am J Therapeut 2006;13:261–73.
  • González-Muñoz GC, Arce MP, López B, et al. Acylamino-phenothiazines: neuroprotective agents displaying multifunctional activities for a potential treatment of Alzheimer’s disease. Eur J Med Chem 2011;46:2224–35.
  • Pohjala L, Utt A, Varjak M, et al. Inhibitors of alphavirus entry and replication identified with a stable chikungunya replicon cell line and virus-based assays. PLos One 2011;6:e28923.
  • Kaur P, Chu JJH. Chikungunya virus: an update on antiviral development and challenges. Drug Discovery Today 2013;18:969–83.
  • Pluta K, Jeleń M, Morak-Młodawska B, et al. Anticancer activity of newly synthesized azaphenothiazines from NCI's anticancer screening bank. NCI’s screening. Pharmacol Rep 2010;62:319–32.
  • Morak-Młodawska B, Pluta K, Zimecki M, et al. Synthesis and selected immunological properties of 10-substituted 1,8-diazaphenothiazines. Med Chem Res 2015;24:1408–18.
  • Zimecki M, Artym J, Kocięba M, et al. The immunosuppressive activities of newly synthesized azaphenothiazines in human and mouse models. Cell Mol Biol Lett 2009;14:622–35.
  • Morak-Młodawska B, Pluta K, Matralis AN, Kourounakis AP. Antioxidant activity of newly synthesized 2,7-diazaphenothiazines. Arch Pharm (Weinheim) Pharm Life 2010;343:268–73.
  • Morak-Młodawska B, Pluta K, Latocha M, et al. Synthesis and anticancer and lipophilic properties of 10-dialkylaminobutynyl derivatives of 1,8- and 2,7-diazaphenothiazines. J Enzyme Inhib Med Chem 2015. [Epub ahead of print]. 1–7. doi: 10.3109/14756366.2015.1101092.
  • Okafor CO. Studies in the heterocyclic series. I. A novel diazaphenothiazine system. J Org Chem 1967;32:2006–7.
  • Rodig OR, Collier RE, Schlatzer RK. Pyridine chemistry. I. The Smiles rearrangement of the 3-amino-2,2′-dipyridyl sulfide system. J Org Chem 1964;29:2652–8.
  • Sheldrick G. SHELXS-97. Program for crystal structure solution. Germany: University of Göttingen; 1990.
  • Sheldrick GM. SHELXL-2013. Program for structure refinement. Germany: University of Göttingen; 2013.
  • Flack HD. On enantiomorph-polarity estimation. Acta Cryst 1983;A39:876–81.
  • Pluta K, Morak-Młodawska B, Jeleń M. Synthesis and properties of diaza-, triaza- and tetraazaphenothiazines. J Heterocycl Chem 2009;46:355–91.
  • Silberg IA, Cormos G, Oniciu DC. Retrosynthetic approach to the synthesis of phenothiazines. In: Katritzky AR, ed. Advances in heterocyclic chemistry. New York: Elsevier; 2006:205
  • Morak B, Pluta K, Suwińska K. Unexpected simple route to novel dipyrido-1,4-thiazines. Heterocyclic Commun 2002;8:331–4.
  • Morak-Młodawska B, Suwińska K, Pluta K, et al. 8-diazaphenothiazine as the double Smiles rearrangement. J Mol Struct 2012;1015:94–8.
  • Clarke FH, Silverman GB, Watnick CM, Sperber N. 3-Azaphenothiazine and dialkylaminoalkyl derivatives. J Org Chem 1961;26:1126–232.
  • Werle E, Kopp E, Leysath G. Die Antihistaminwirkung von 2,7-diazaphenothiazin und einiger seiner derivate. Arzneim-Forsch 1962;4:443–4.
  • Pappalardo G, Vittorio F, Ronsisvalle G. Investigation on 2,3-diazaphenothiazine. Quaternization reactions. Ann Chim 1973;63:255–67.
  • Carter S, Cheeseman G. Some aspects of 1,4-diazaphenothiazine chemistry. Tetrahedron 1977;33:827–32.
  • Saari W, Cochran D, Lee Y, et al. Preparation of some 10-[3-(dimethylamino)-1-propyl]-10H-pyrazino[2,3-b][1,4] benzothiazines as potential neuroleptics. J Med Chem 1983;26:564–9.
  • Cambridge Structural Database System, Release v5.36. Cambridge, UK: Cambridge Crystallographic Data Centre; [last accessed 30 Oct 2015].
  • Morak-Młodawska B, Suwińska K, Pluta K, Jeleń M. Alkylations of 10H-2,7-diazaphenothiazine to alkyl-2,7-diazaphenothiazinium salts and 7-alkyl-2,7-diazaphen-othiazines. Heterocycles 2010;81:2511–22.
  • Morak-Młodawska B, Suwińska K, Pluta K, Jeleń M. 10-(Prop-2-yn-1-yl)-2,7-diazaphenothiazine. Acta Crystallogr Sect E Struct Rep Online 2012;68:o1590–1.
  • Allen MA, Andrysik Z, Dengler VL, et al. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. eLife 2014;3:1–29.
  • Giui CY, Ngo L, Xu WS, et al. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. PNAS 2004;101:1241–6.
  • Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303:844–9.
  • Hemann MT, Lowe SW. The p53-Bcl-2 connection. Cell Death Differ 2006;13:1256–9.
  • Antonsson B, Montessuit S, Sanchez B, Martinou JC. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 2001;276:11615–23.
  • Scorrano L, Korsmeyer SJ. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 2003;304:437–44.
  • Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res 2000;256:50–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.