2,074
Views
575
CrossRef citations to date
0
Altmetric
Original Article

Human auditory steady-state responses: Respuestas auditivas de estado estable en humanos

, , &
Pages 177-219 | Received 14 Mar 2002, Accepted 02 Jul 2002, Published online: 07 Jul 2009

References

  • Anderson T W. An introduction to multivariate statistical analysis. Wiley, New York 1984
  • Andrade J, Sapsford D J, Jeevaratnum D, Pickworth A J, Jones J G. The coherent frequency in the electroencephalogram as an objective measure of cognitive function during propofol sedation. Anesth Analg 1996; 83: 1279–1284
  • Aoyagi M, Fuse T, Suzuki T, Kim Y, Koike Y. An application of phase spectral analysis to amplitude-modulation following response. Acta Otolaryngol Suppl 1993a; 504: 82–88
  • Aoyagi M, Kiren T, Kim Y, Suzuki Y, Fuse T, Koike Y. Optimal modulation frequency for amplitude-modulation following response in young children during sleep. Hear Res 1993b; 65: 253–261
  • Aoyagi M, Kiren T, Kim Y, Suzuki Y, Fuse T, Koike Y. Frequency specificity of amplitude-modulation-following response detected by phase spectral analysis. Audiology 1993c; 32: 293–301
  • Aoyagi M, Kiren T, Furuse H. Effects of aging on amplitude-modulation following response. Acta Otolaryngol Suppl 1994a; 511: 15–22
  • Aoyagi M, Furuse H, Yokota M, Kiren T, Suzuki Y, Koike Y. Detectability of amplitude-modulation following response at different carrier frequencies. Acta Otolaryngol Suppl 1994b; 511: 23–27
  • Aoyagi M, Kiren T, Furuse H. Pure-tone threshold prediction by 80-Hz amplitude-modulation following response. Acta Otolaryngol Suppl 1994c; 511: 7–14
  • Aoyagi M, Suzuki Y, Yokota M, Furuse H, Watanabe T, Ito T. Reliability of 80-Hz amplitude-modulation-following response detected by phase coherence. Audiol Neurootol 1999; 4: 28–37
  • Arnold S, Burkard R. The auditory evoked potential difference tone and cubic difference tone measured from the inferior colliculus of the chincilla. J Acoust Soc Am 1998; 104: 1565–1573
  • Azzena G B, Conti G, Santarelli R, Ottaviani F, Paludetti G, Maurizi M. Generation of human auditory steady-state responses (SSRS). I: Stimulus rate effects. Hear Res 1995; 83: 1–8
  • Barajas J J, Fernandez R, Bernal M R. Middle latency and 40 Hz auditory evoked responses in normal hearing children: 500 Hz thresholds. Scand Audiol Suppl 1988; 30: 99–104
  • Basar E, Rosen B, Basar-Eroglu C, Greitschus F. The associations between 40 Hz-EEG and the middle latency response of the auditory evoked potential. Int J Neurosci 1987; 33: 103–117
  • Basar-Eroglu C, Struber D, Schurmann M, Stadler M, Basar E. Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. Int J Psychophysiol 1996; 24: 101–112
  • Batra R, Kuwada S, Maher V L. The frequency-following response to continuous tones in humans. Hear Res 1986; 21: 167–177
  • Bijl G K, Veringa F. Neural conduction time and steady-state evoked potentials. Electroencephalogr Clin Neurophysiol 1985; 62: 465–467
  • Bocttcher F A, Poth E A, Mills J H, Dubno J R. The amplitude-modulation following response in young and aged human subjects. Hear Res 2001; 153: 32–42
  • Bonhomme V, Fiset P, Meuret P. Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J Neurophysiol 2001; 85: 1299–1308
  • Borda R P. The 40/sec middle-latency auditory response in Alzheimer's disease, Parkinson's disease, and age-matched normals. PhD thesis, University of Houston, Houston. 1984
  • Brillinger D R. Time series: data analysis and theory. Holt, Rinehart and Winston, New York 1975
  • Campbell F W, Atkinson J, Francis M R, Green D M. Estimation of auditory thresholds using evoked potentials. A clinical screening test. Prog Clin Neurophysiol 1977; 2: 68–78
  • Cebulla M, Stürzebecher E, Wernccke K D. Objective detection of amplitude-modulation following response (AMFR). Audiology 2001; 40: 245–252
  • Chambers R D, Meyer T A. Reliability of threshold estimation in hearing-impaired adults using the AMFR. J Am Acad Audiol 1993; 4: 22–32
  • Champlin C A. Method for detecting auditory steady-state potentials recorded from humans. Hear Res 1992; 58: 63–69
  • Chatrian G E, Petersen M C, Lazarte J A. Responses to clicks from the human brain: some depth electrographic observations. Electro-encephalogr Clin Neurophysiol 1960; 12: 479–489
  • Chertoff M E, Hecox K E. Auditory nonlinearities measured with auditory-evoked potentials. J Acoust Soc Am 1990; 87: 1248–1254
  • Chertoff M E, Hecox K E, Goldstein R. Auditory distortion products measured with averaged auditory evoked potentials. J Speech Hear Res 1992; 35: 157–166
  • Ciulla C, Takeda T, Morabito M, Endo H, Kumagai T, Xiao R. MEG measurements of 40 Hz auditory evoked response in human brain. Electroencephalogr Clin Neurophysiol Suppl 1996; 47: 121–127
  • Cohen L T, Rickards F W, Clark G M. A comparison of steady-state evoked potentials to modulated tones in awake and sleeping humans. J Acoust Soc Am 1991; 90: 2467–2479
  • Cone-Wesson B, Dowell R C, Tomlin D, Rance G, Ming W J. The auditory steady-state response: I Comparisons with the auditory brainstem response. J Am Acad Audiol 2002a; 13: 173–187
  • Cone-Wesson B, Parker J, Swiderski N, Rickards F. The auditory steady-state response: II. Full-term and premature neonates. J Am Acad Audiol 2002b; 13: 260–269
  • Cone-Wesson B, Rickards F, Poulis C, Parker J, Tan L, Pollard J. The auditory steady-state response: III Clinical observations and applications in infants and children. J Am Acad Audiol 2002c; 13: 270–282
  • Conti G, Santarelli R, Ottaviani F, Azzena G B. Generation of human auditory steady-state responses. Monitoring of stimulus-induced 40Hz brain oscillations, G. Litscher. Pabst Science Publishers, Scottsdale 1998; 84–107
  • Conti G, Santarelli R, Grassi C, Ottaviani F, Azzena G B. Auditory steady-state responses to click trains from the rat temporal cortex. Clin Neurophysiol 1999; 110: 62–70
  • Cooley J W, Tukey J W. An algorithm for the machine calculation of complex Fourier series. Math Comput 1965; 19: 297–301
  • Dauman R, Szyfter W, Charlet de Sauvage R, Cazals Y. Low frequency thresholds assessed with 40 Hz MLR in adults with impaired hearing. Arch Otorhinolaryngol 1984; 240: 85–89
  • Diamond A L. Latency of the steady state visual evoked potential. Electroencephalogr Clin Neurophysiol 1977; 42: 125–127
  • Dimitrijevic A, John M S, van Roon P, Picton T W. Human auditory steady-state responses to tones independently modulated in both frequency and amplitude. Ear Hear 2001; 22: 100–111
  • Dimitrijevic A, John M S, van Roon P. Estimating the audiogram using multiple auditory steady-state responses. J Am Acad Audiol 2002; 13: 205–224
  • Dobie R A, Wilson M J. Auditory responses to the envelopes of pseudorandom noise stimuli in humans. Hear Res 1988; 36: 9–20
  • Dobie R A, Wilson M J. Analysis of auditory evoked potentials by magnitude-squared coherence. Ear Hear 1989; 10: 2–13
  • Dobie R A, Wilson M J. Optimal smoothing of coherence estimates. Electroencephalogr Clin Neurophysiol 1991; 80: 194–200
  • Dobie R A, Wilson M J. Objective response detection in the frequency domain. Electroencephalogr Clin Neurophysiol 1993; 88: 516–524
  • Dobie R A, Wilson M J. Objective detection of 40 Hz auditory evoked potentials: phase coherence vs. magnitude-squared coherence. Electroencephalogr Clin Neurophysiol 1994a; 92: 405–413
  • Dobie R A, Wilson M J. Phase weighting: a method to improve objective detection of steady-state evoked potentials. Hear Res 1994b; 79: 94–98
  • Dobie R A, Wilson M J. Objective versus human observer detection of 40-Hz auditory-evoked potentials. J Acoust Soc Am 1995a; 97: 3042–3050
  • Dobie R A, Wilson M J. Comparison of objective threshold estimation procedures for 40-Hz auditory evoked potentials. Ear Hear 1995b; 16: 299–310
  • Dobie R A, Wilson M J. A comparison of t test, F test, and coherence methods of detecting steady-state auditory-evoked potentials, distortion-product otoacoustic emissions, or other sinusoids. J Acoust Soc Am 1996; 100: 2236–2246
  • Dobie R A, Wilson M J. Low-level steady-state auditory evoked potentials: effects of rate and sedation on detectability. J Acoust Soc Am 1998; 104: 3482–3488
  • Dolphin W F. Auditory evoked responses to amplitude modulated stimuli consisting of multiple envelope components. J Comp Physiol A 1996; 179: 113–121
  • Dolphin W F. The envelope following response to multiple tone pair stimuli. Hear Res 1997; 110: 1–14
  • Dolphin W F, Mountain D C. The envelope following response (EFR) in the Mongolian gerbil to sinusoidally amplitude-modulated signals in the presence of simultaneously gated pure tones. J Acoust Soc Am 1993; 94: 3215–3226
  • Dolphin W F, Chertoff M E, Burkard R. Comparison of the envelope following response in the Mongolian gerbil using two-tone and sinusoidally amplitude-modulated tones. J Acoust Soc Am 1994; 96: 2225–2234
  • Dolphin W F, Au W WL, Nachtigall P E, Pawloski J. Modulation rate transfer functions to low-frequency carriers in three species of cetaceans. J Comp Physiol A 1995; 177: 235–245
  • Dumermuth G, Molinari L. Spectral analysis of EEG background activity. Methods of analysis of brain electrical and magnetic signals, A. S. Gevins, A. Remond. Elsevier, Amsterdam 1987; 85–130
  • Dutton R C, Smith W D, Rampil I J, Chortkoff B S, Eger E I. Forty-Hertz midlatency auditory evoked potential activity predicts wakeful response during desflurane and propofol anesthesia in volunteers. Anesthesiology 1999; 91: 1209–1220
  • Eggermont J J. Between sound and perception: reviewing the search for a neural code. Hear Res 2001; 157: 1–42
  • Elberling C, Wahlgreen O. Estimation of auditory brainstem response, ABR, by means of Bayesian inference. Scand Audiol 1985; 14: 89–96
  • Fasti H. The hearing sensation roughness and neuronal responses to AM-tones. Hear Res 1990; 46: 293–295
  • Firsching R. The brain-stem and 40 Hz middle latency auditory evoked potentials in brain death. Acta Neurochir 1989; 101: 52–55
  • Firsching R, Luther J, Eidelberg E, Brown W E, Jr, Story J L, Boop F A. 40 Hz-middle latency auditory evoked response in comatose patients. Electroencephalogr Clin Neurophysiol 1987; 67: 213–216
  • Fisher R A. Tests of significance in harmonic analysis. Proc R Soc Lond 1929; 125: 54–59
  • Fisher N I. Statistical analysis of circular data. Cambridge University Press, Cambridge 1993
  • Franowicz M N, Barth D S. Comparison of evoked potentials and high-frequency (gamma-band) oscillating potentials in rat auditory cortex. J Neurophysiol 1995; 74: 96–112
  • Fridman J, Zappulla R, Bergelson M. Application of phase spectral analysis for brain stem auditory evoked potential detection in normal subjects and patients with posterior fossa tumors. Audiology 1984; 23: 99–113
  • Galambos R. A 40-Hz auditory potential recorded from the human scalp. Nicolet Potentials 1981; 1: 12
  • Galambos R. A comparison of certain gamma band (40-Hz) brain rhythms in cat and man. Induced rhythms in the brain, E. Basar, T. H. Bullock. Birkhäuser, Boston 1992; 201–216
  • Galambos R, Makeig S. Dynamic changes in steady-state potentials. Dynamics of sensory and cognitive processing of the brain, E. Basar. Springer, Berlin 1988; 178–199
  • Galambos R, Makeig S. Physiological studies of central masking in man. I: The effects of noise on the 40-Hz steady-state response. J Acoust Soc Am 1992a; 92: 2683–2690
  • Galambos R, Makeig S. Physiological studies of central masking in man. II: Tonepip SSRS and the masking level difference. J Acoust Soc Am 1992b; 92: 2691–2697
  • Galambos R, Makeig S, Talmachoff P J. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 1981; 78: 2643–2647
  • Geisler C D. Average responses to clicks in man recorded by scalp electrodes. Technical Report 380. MIT Research Laboratories of Electronics, Cambridge 1960
  • Gilron I, Plourde G, Marcantoni W, Varin F. 40 Hz auditory steady-state response and EEG spectral edge frequency during sufentanil anaesthesia. Can J Anaesth 1998; 45: 115–121
  • Giraud A L, Lorenzi C, Ashburner J. Representation of the temporal envelope of sounds in the human brain. J Neurophysiol 2000; 84: 1588–1598
  • Goldstein J L, Baer T, Kiang N YS. A theoretical treatment of latency, group delay, and tuning characteristics for auditory-nerve responses to clicks and tones. Physiology of the auditory system; based on the proceedings of a workshop, M. B. Sachs. National Educational Consultants, Baltimore 1971; 133–141
  • Gorga M P, Thornton A R. The choice of stimuli for ABR measurements. Ear Hear 1989; 10: 217–230
  • Gorga M P, Beauchaine K A, Reiland J K. Comparison of onset and steady-state responses of hearing aids: implications for the use of the auditory brainslem response in the selection of hearing aids. J Speech Hear 1987; 30: 130–136
  • Green G G, Kay R H, Rees A. Responses evoked by frequency-modulated sounds recorded from the human scalp. J Physiol 1979; 296: 21P–22P
  • Griffiths S K, Chambers R D. The amplitude modulation-following response as an audiometric tool. Ear Hear 1991; 12: 235–241
  • Gutschalk A, Mase R, Roth R. Dcconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin Neurophysiol 1994; 110: 856–868
  • Hall J W. Auditory brainstem frequency following responses to waveform envelope periodicity. Science 1979; 205: 1297–1299
  • Harada J, Aoyagi M, Suzuki T, Kiren T, Koike Y. A study on the phase spectral analysis of middle latency response and 40-Hz event-related potential in central nervous system disorders. Acta Otolaryngol Suppl 1994; 511: 34–39
  • Hari R, Hämäläinen M, Joutsiniemi S L. Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 1989; 86: 1033–1039
  • Herdman A T, Stapells D R. Thresholds determined using the monotic and dichotic multiple auditory steady-state response technique in normal-hearing subjects. Scand Audiol 2001; 30: 41–49
  • Herdman A T, Lins O, Van Roon P, Stapells D R, Scherg M, Picton T W. Intracerebral sources of human auditory steady-state responses. Brain Topography 2002a; 15: 69–86
  • Herdman A T, Picton T W, Stapells D R. Place specificity of auditory steady state responses. J Acoust Soc Am 2002b; 112: 1569–1582
  • Herdman A T, Stapells D R. Auditory steady state response thresholds of adults with sensorineural hearing impairment. Int J Audiol 2003
  • Hink R F, Kodera K, Yamada O, Kaga K, Suzuki J. Binaural interaction of a beating frequency-following response. Audiology 1980; 19: 36–43
  • Hogan K. 40 Hz steady-state evoked potentials (SSEP) during isoflurane-N2O anesthesia. Anesthesiology 1987; 67: A402
  • Hoke M, Ross B, Wickesbcrg R, Lütkenhöner B. Weighted averaging -theory and application to electric response audiometry. Electroencephalogr Clin Neurophysiol 1984; 57: 484–489
  • Hotelling H. The generalization of student's ratio. Ann Math Statist 1931; 2: 360–378
  • Isaksson A, Wennberg A. Visual evaluation and computer analysis of the EEG—a comparison. Electroencephalogr Clin Neurophysiol 1975; 38: 79–86
  • Jerger J, Chmiel R, Frost J D, Jr, Coker N. Effect of sleep on the auditory steady state evoked potential. Ear Hear 1986; 7: 240–245
  • Jerger J, Chmiel R, Glaze D, Frost J D, Jr. Rate and filter dependence of the middle-latency response in infants. Audiology 1987; 26: 269–283
  • John M S, Picton T W. Human auditory steady-state responses to amplitude-modulated tones: phase and latency measurements. Hear Res 2000a; 141: 57–79
  • John M S, Picton T W. MASTER: a windows program for recording multiple auditory steady-state responses. Comput Methods Programs Biomed 2000b; 61: 125–150
  • John M S, Lins O G, Boucher B L, Picton T W. Multiple auditory steady-state responses (MASTER): stimulus and recording parameters. Audiology 1998; 37: 59–82
  • John M S, Dimitrijevic A, Picton T W. Weighted averaging of steady-state responses. Clin Neurophysiol 2001a; 112: 555–562
  • John M S, Dimitrijevic A, van Roon P, Picton T W. Multiple auditory steady-state responses to AM and FM stimuli. Audiol Neurootol 2001b; 6: 12–27
  • John E R, Prichep L S, Kox W. Invariant reversible qEEG effects of anesthetics. Consciousness Cognition 2001c; 10: 165–183
  • John M S, Dimitrijevic A, Picton T W. Auditory steady-state responses to exponential modulation envelopes. Ear Hear 2002a; 23: 106–117
  • John M S, Purcell D W, Dimitrijevic A, Picton T W. Advantages and caveats when recording steady-state responses to multiple simultaneous stimuli. J Am Acad Audiol 2002b; 13: 246–259
  • Johnson B W, Weinberg H, Ribary U, Cheyne D O, Ancill R. Topographic distribution of the 40 Hz auditory evoked-related potential in normal and aged subjects. Brain Topogr 1988; 1: 117–121
  • Kankkunen A, Rosenhall U. Comparison between thresholds obtained with pure-tone audiometry and the 40-Hz middle latency response. Scand Audiol 1985; 14: 99–104
  • Karmos G, Mäkelä J P, Ulbert I, Winkler I. Evidence for intracortical generation of the auditory 40-Hz response in the cat. New developments in event-related potentials, H. J. Heinze, T. F. Münte, G. R. Mangun. Birkhäuser, Boston 1993; 87–93
  • Khanna S M, Teich M C. Spectral characteristics of the responses of primary auditory-nerve fibers to amplitude-modulated signals. Hear Res 1989a; 39: 143–157
  • Khanna S M, Teich M C. Spectral characteristics of the responses of primary auditory-nerve fibers to frequency-modulated signals. Hear Res 1989b; 39: 159–175
  • Kileny P, Shea S L. Middle-latency and 40-Hz auditory evoked responses in normal-hearing subjects: click and 500-Hz thresholds. J Speech Hear Res 1986; 29: 20–28
  • Kiren T, Aoyagi M, Furuse H, Koike Y. An experimental study on the generator of amplitude-modulation following response. Acta Otolaryngol Suppl 1994; 511: 28–33
  • Klein A J. Properties of the brain-stem response slow-wave component. I. Latency, amplitude and threshold sensitivity. Arch Otolaryngol 1983a; 109: 6–12
  • Klein A J. Properties of the brain-stem response slow-wave component. II. Frequency specificity. Arch Otolaryngol 1983b; 109: 74–78
  • Knight R D, Kemp D T. Indications of different distortion product otoacoustic emission mechanisms from a detailed f1, f2 area study. J Acoust Soc Am 2000; 107: 457–473
  • Krishna B S, Semple M N. Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. J Neurophysiol 2000; 84: 255–273
  • Krishnan A, Parkinson J. Human frequency-following response: representation of tonal sweeps. Audiol Neurootol 2000; 5: 312–321
  • Kulli J, Koch C. Does anesthesia cause loss of consciousness?. Trends Neurosci 1991; 14: 6–10
  • Kuwada S, Batra R, Maher V L. Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res 1986; 21: 179–192
  • Langner G, Schreiner C E. Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J Neurophysiol 1988; 60: 1799–1822
  • Lehmann D, Michel C M. Intracerebral dipole sources of EEG FFT power maps. Brain Topogr 1989; 2: 155–T64
  • Lehmann D, Michel C M. Intracerebral dipole source localization for FFT power maps. Electroencephalogr Clin Neurophysiol 1990; 76: 271–276
  • Lenarz T, Gulzow J, Grozinger M, Hoth S. Clinical evaluation of 40-Hz middle-latency responses in adults: frequency specific threshold estimation and suprathreshold amplitude characteristics. Otorhinolaryngol Relat Spec ORL 1986; 48: 24–32
  • Levi E C, Folsom R C, Dobie R A. Amplitude-modulation following response (AMFR): effects of modulation rate, carrier frequency, age and state. Hear Res 1993; 68: 42–52
  • Levi E C, Folsom R C, Dobie R A. Coherence analysis of envelope-following responses (EFRs) and frequency-following responses (FFRs) in infants and adults. Hear Res 1995; 89: 21–27
  • Linden R D, Campbell K B, Hamel G, Picton T W. Human auditory steady state evoked potentials during sleep. Ear Hear 1985; 6: 167–174
  • Linden R D, Picton T W, Hamel G, Campbell K B. Human auditory steady state evoked potentials during selective attention. Electroencephalogr Clin Neurophysiol 1987; 66: 145–159
  • Lins O G, Picton T W. Auditory steady-state responses to multiple simultaneous stimuli. Electroencephalogr Clin Neurophysiol 1995; 96: 420–432
  • Lins O G, Picton P E, Picton T W, Champagne S C, Durieux-Smith A. Auditory steady-state responses to tones amplitude-modulated at 80–110 Hz. J Acoust Soc Am 1995; 97: 3051–3063
  • Lins O G, Picton T W, Boucher B L. Frequency-specific audiometry using steady-state responses. Ear Hear 1996; 17: 81–96
  • Lucertini M, Ciniglio Appiani G, Antonini R, Urbani L. Effects of hypobaric hypoxia on the middle-latency and steady-state auditory evoked potentials. Audiology 1993; 32: 356–362
  • Lucertini M, Verde P, De Santis S. Human auditory steady-state responses during repeated exposure to hypobaric hypoxia. Audiol Neurootol 2002; 7: 107–113
  • Lütkenhöner B. Frequency-domain localization of intracerebral dipolar sources. Electroencephalogr Clin Neurophysiol 1992; 82: 112–118
  • Lütkenhöner B, Hoke M, Pantev C. Possibilities and limitations of weighted averaging. Biol Cybern 1985; 52: 409–416
  • Lynn J M, Lesner S A, Sandridge S A, Daddario C C. Threshold prediction from the auditory 40-Hz evoked potential. Ear Hear 1984; 5: 366–370
  • Madler C, Pöppel E. Auditory evoked potentials indicate the loss of neuronal oscillations during general anaesthesia. Naturwissenschaftcn 1987; 74: 42–43
  • Madler C, Keller L, Schwender D, Pöppel E. Sensory information processing during general anaesthesia: effect of isoflurane on auditory evoked neuronal oscillations. Br J Anaesth 1991; 66: 81–87
  • Maiste A, Picton T. Human auditory evoked potentials to frequency-modulated tones. Ear Hear 1989; 10: 153–160
  • Makeig S, Galambos R. The CERP: event-related perturbations in steady-state responses. Brain dynamics: progress and perspectives, E. Basar. Springer, Berlin 1989; 373–400
  • Makeig S, Müller M M, Rockstroh B. Effects of voluntary movements on early auditory brain responses. Exp Brain Res 1996; 110: 487–492
  • Mäkelä J P, Hari R. Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol 1987; 66: 539–546
  • Mäkelä J P, Karmos G, Molnar M, Csepe V, Winkler I. Steady-state responses from the cat auditory cortex. Hear Res 1990; 45: 41–50
  • Mardia K V. Statistics of directional data. Academic Press, New York 1972
  • Mardia K V, Kent J T, Bibby J M. Multivariate analysis. Academic Press, New York 1979
  • Mauer G, Döring W H. Generators of amplitude modulation following response (AMFR). Paper presented at 16th meeting of the Evoked Response Audiometry Study Group, TromsøNorway 1999
  • Maurizi M, Almadori G, Paludetti G, Ottaviani F, Rosignoli M, Luciano R. 40-Hz steady-state responses in newborns and in children. Audiology 1990; 29: 322–328
  • McAnally K I, Stein J F. Scalp potentials evoked by amplitude modulated tones in dyslexia. J Speech Lang Hear Res 1997; 40: 939–945
  • McGee T, Kraus N. Auditory development reflected by middle latency response. Ear Hear 1996; 17: 419–429
  • McGee T, Kraus N, Killion M, Rosenberg R, King C. Improving the reliability of the auditory middle latency response by monitoring EEG delta activity. Ear Hear 1993; 14: 76–84
  • Meuret P, Backman S B, Bonhomme V, Plourde G, Fiset P. Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers. Anesthesiology 2000; 93: 708–717
  • Milford C A, Birchall J P. Steady-state auditory evoked potentials to amplitude-modulated tones in hearing-impaired subjects. Br J Audiol 1989; 23: 137–142
  • Moore B C, Glasberg B R. Gap detection with sinusoids and noise in normal, impaired, and electrically stimulated ears. J Acoust Soc Am 1988; 83: 1093–1101
  • Moushcgian G, Rupert A L, Stillman R D. Scalp-recorded early responses in man to frequencies in the speech range. Electroencephalogr Clin Neurophysiol 1973; 35: 665–667
  • Muchnik C, Katz-Putter H, Rubinstein M, Hildesheimer M. Normative data for 40-Hz event-related potentials to 500-Hz tonal stimuli in young and elderly subjects. Audiology 1993; 32: 27–35
  • Munglani R, Andrade J, Sapsford D J, Baddeley A, Jones J G. A measure of consciousness and memory during isoflurane administration: the coherent frequency. Br J Anaesth 1993; 71: 633–641
  • Norcia A M, Tyler C W, Hamer R D, Wesemann W. Measurement of spatial contrast sensitivity with the swept contrast VEP. Vision Res 1989; 29: 627–637
  • Oates P, Stapells D R. Frequency specificity of the human auditory brainstem and middle latency responses to brief tones. II. Derived response analyses. J Acoust Soc Am 1997; 102: 3609–3619
  • Palaskas C W, Wilson M J, Dobie R A. Electrophysiologic assessment of low-frequency hearing: sedation effects. Otolaryngol Head Neck Surg 1989; 101: 434–441
  • Pantev C, Elbert T, Makeig S, Hampson S, Eulitz C, Hoke M. Relationship of transient and steady-state auditory evoked fields. Electroencephalogr Clin Neurophysiol 1993; 88: 389–396
  • Pantev C, Roberts L E, Elbert T, Ross B, Wienbruch C. Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 1996; 101: 62–74
  • Parker D, Matsebula D. The period evoked potential: objective response detection and 500 Hz thresholds in normally hearing adults. Br J Audiol 1998; 32: 167–175
  • Parker D, O'Dwyer D. The 40 Hz modulation-following response: prediction of low-frequency uncomfortable loudness levels in normally hearing adults. Audiology 1998; 37: 372–381
  • Perez-Abalo M C, Savio G, Torres A, Martin V, Rodriguéz E, Galan L. Steady slate responses to multiple amplitude-modulated tones: an optimized method to test frequency-specific thresholds in hearing-impaired children and normal-hearing subjects. Ear Hear 2001; 22: 200–211
  • Pethe J, Hocke T, Müller R, von Specht H. On the frequency spectrum of amplitude modulation following responses. Scand Audiol 2000; 29: 191–195
  • Pethe J, Von Specht H, Mühler R, Hocke T. Amplitude modulation following responses in awake and sleeping humans—a comparison for 40 Hz and 80 Hz modulation frequency. Scand Audiol Suppl 2001; 52: 152–155
  • Picton T W. The strategy of evoked potential audiometry. Early diagnosis of hearing loss, S. E. Gerber, G. T. Mencher. Grune and Stratton, New York 1978; 297–307
  • Picton T W. Human auditory steady state responses. Evoked potentials III, C. Barber, T. Blum. Butterworth, Boston 1987; 117–124
  • Picton T W, Rodriguez R T, Linden R D, Maiste A C. The neurophysiology of human hearing. Human Communication Canada 1985; 9: 127–136
  • Picton T W, Vajsar J, Rodriguez R, Campbell K B. Reliability estimates for steady state evoked potentials. Electroencephalogr Clin Neurophysiol 1987a; 68: 119–131
  • Picton T W, Dauman R, Aran J-M. Réponses évoquées en 'régime permanent' chez l'homme par la modulation sinusoidale de fréquence. J Otolaryngol 1987b; 16: 140–145
  • Picton T W, Skinner C R, Champagne S C, Kellett A J, Maiste A C. Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J Acoust Soc Am 1987c; 82: 165–178
  • Picton T W, Durieux-Smith A, Champagne S C. Objective evaluation of aided thresholds using auditory steady-state responses. J Am Acad Audiol 1998; 9: 315–331
  • Picton T W, Dimitrijevic A, John M S, van Roon P. The use of phase in the detection of auditory steady-state responses. Clin Neurophysiol 2001; 112: 1692–1711
  • Picton T W, Dimitrijevic A, John M S. Multiple auditory steady-state responses. Ann Otol Rhinol Laryngol 2002a; 111(suppl 189): 16–21
  • Picton T W, Dimitrijevic A, Van Roon P, John M S, Reed M, Finklestein H. Possible roles for the auditory steady-state responses in fitting hearing aids. A sound foundation through early amplification 2001 Proceedings of the 2nd international conference, R. C. Seewald, J. S. Gravel. Phonak AG, Basel 2002b; 63–73
  • Plourde G. The effects of propofol on the 40-Hz auditory steady-state response and on the electroencephalogram in humans. Anesth Analg 1996; 82: 1015–1022
  • Plourde G. Auditory evoked potentials and 40-Hz oscillations. Anesthesiology 1999; 91: 1187–1189
  • Plourde G, Picton T W. Human auditory steady state responses during general anesthesia. Anesth Analg 1990; 71: 460–468
  • Plourde G, Villemure C. Comparison of the effects of enflurane/N2O on the 40-Hz auditory steady-state response versus the auditory middle-latency response. Anesth Analg 1996; 82: 75–83
  • Plourde G, Stapells D R, Picton T W. The human auditory steady-state evoked potentials. Acta Otolaryngol Suppl 1991; 491: 153–159
  • Plourde G, Baribeau J, Bonhomme V. Ketamine increases the amplitude of the 40-Hz auditory steady-state response in humans. Br J Anaesth 1997; 78: 524–529
  • Plourde G, Villemure C, Fiset P, Bonhomme V, Backman S B. Effect of isoflurane on the auditory steady-state response and on consciousness in human volunteers. Anesthesiology 1998; 89: 844–851
  • Poon P W, Chiu T W. Similarities of FM and AM receptive space of single units at the auditory midbrain. Biosystems 2000; 58: 229–237
  • Popov V V, Supin A Y, Klishin V O. Frequency tuning curves of the dolphin's hearing: envelope-following response study. J Comp Physiol [A] 1996; 178: 571–578
  • Purcell D W, John M S, Picton T W. Concurrent measurement of distortion product otoacoustic emissions and auditory steady state evoked potentials. Hear Res 2003; 176: 128–141
  • Rance G, Briggs R JS. Assessment of hearing in infants with moderate to profound impairment: the Melbourne experience with auditory steady-state evoked potential testing. Ann Otol Rhinol Laryngol 2002; 111(suppl 189): 22–28
  • Rance G, Rickards F. Prediction of hearing threshold in infants using auditory steady-state evoked potentials. J Am Acad Audiol 2002; 13: 236–245
  • Rance G, Rickards F W, Cohen L T, Burton M J, Clark G M. Steady state evoked potentials: a new tool for the accurate assessment of hearing in cochlear implant candidates. Adv Otorhinolaryngol 1993; 48: 44–48
  • Rance G, Rickards F W, Cohen L T, De Vidi S, Clark G M. The automated prediction of hearing thresholds in sleeping subjects using auditory steady-state evoked potentials. Ear Hear 1995; 16: 499–507
  • Rance G, Dowell R C, Rickards F W, Beer D E, Clark G M. Steady-state evoked potential and behavioral hearing thresholds in a group of children with absent click-evoked auditory brain stem response. Ear Hear 1998; 19: 48–61
  • Rance G, Beer D E, Cone-Wesson B. Clinical findings for a group of infants and young children with auditory neuropathy. Ear Hear 1999; 20: 238–252
  • Rayleigh L. On the resultant of a large number of vibrations of the same pitch and arbitrary phase. Phil Mag 1880; 10: 73–78
  • Rees A, Green G G, Kay R H. Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man. Hear Res 1986; 23: 123–133
  • Regan D. Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalogr Clin Neurophysiol 1966; 20: 238–248
  • Regan D. Rapid objective refraction using evoked brain potentials. Invest Opthalmol 1973; 12: 669–679
  • Regan D. Latencies of evoked potentials to flicker and to pattern speedily estimated by simultaneous method. Electroencephalogr Clin Neurophysiol 1976; 40: 654–660
  • Regan D. Evoked potentials in basic and clinical research. EEG informatics: a didactic review of methods and applications of EEG data processing, A. Rémond. Elsevier, Amsterdam 1977; 319–346
  • Regan D. Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, Amsterdam 1989
  • Regan M P. Linear half-wave rectification of modulated sinusoids. Appl Math Comput 1994a; 62: 61–79
  • Regan M P. A method for calculating the spectral response of a hair cell to a pure tone. Biol Cybern 1994b; 71: 13–16
  • Regan D, Heron J R. Clinical investigation of lesions of the visual pathway: a new objective technique. J Neurol Neurosurg Psychiatry 1969; 32: 479–483
  • Regan M P, Regan D. A frequency domain technique for characterizing nonlinearities in biological systems. J Theor Biol 1988; 133: 293–317
  • Regan M P, Regan D. Nonlinear terms produced by passing amplitude-modulated sinusoids through a hair cell transducer function. Biol Cybern 1993; 69: 439–446
  • Rei G, Fu B T. Diagnostic significance of the staggered spondaic word test and 40-Hz auditory event-related potentials. Audiology 1988; 27: 8–16
  • Ribary U, Loannides A A, Singh K D. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci USA 1991; 88: 11037–11041
  • Rickards F W, Clark G M. Steady-state evoked potentials to amplitude-modulated tones. Evoked potentials II, R. H. Nodar, C. Barber. Butterworth, Boston, MA 1984; 163–168
  • Rickards F W, Tan L E, Cohen L T, Wilson O J, Drew J H, Clark G M. Auditory steady-state evoked potential in newborns. Br J Audiol 1994; 28: 327–337
  • Rockstroh B, Muller M, Heinz A, Wagner M, Berg P, Elbert T. Modulation of auditory responses during oddball tasks. Biol Psychol 1996; 43: 41–55
  • Rodriguez R, Picton T, Linden D, Hamel G, Laframboise G. Human auditory steady state responses: effects of intensity and frequency. Ear Hear 1986; 7: 300–313
  • Rohrbaugh J W, Varner J L, Paige S R, Eckardt M J, Ellingson R J. Event-related perturbations in an electrophysiological measure of auditory function: a measure of sensitivity during orienting?. Biol Psychol 1989; 29: 247–271
  • Rohrbaugh J W, Varner J L, Paige S R, Eckardt M J, Ellingson R J. Auditory and visual event-related perturbations in the 40 Hz auditory steady-state response. Electroencephalogr Clin Neurophysiol 1990; 76: 148–164
  • Ros B, Borgmann C, Draganova R, Roberts L E, Pantev C. A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. J Acoust Soc Am 2000; 108: 679–691
  • Ros B, Picton T W, Pantev C. The onset of steady-state responses reflects temporal integration in the human auditory cortex. Hear Res 2002; 165: 68–84
  • Sammeth C A, Barry S J. The 40-Hz event-related potential as a measure of auditory sensitivity in normals. Scand Audiol 1985; 14: 51–55
  • Santarelli R, Conti G. Generation of auditory steady-state responses: linearity assessment. Scand Audiol Suppl 1999; 51: 23–32
  • Santarelli R, Maurizi M, Conti G, Ottaviani F, Paludetti G, Pettorossi V E. Generation of human auditory steady-state responses (SSRS). II: Addition of responses to individual stimuli. Hear Res 1995; 83: 9–18
  • Sapsford D J, Pickworth A J, Jones J G. A method for producing the coherent frequency: a steady-state auditory evoked response in the electroencephalogram. Anesth Analg 1996; 83: 1273–1278
  • Savio G, Cardenas J, Perez Abalo M, Gonzalez A, Valdes J. The low and high frequency auditory steady state responses mature at different rates. Audiol Neurootol 2001; 6: 279–287
  • Sayers B M, Beagley H A, Riha J. Pattern analysis of auditory-evoked EEG potentials. Audiology 1979; 18: 1–16
  • Schimmel H, Rapin I, Cohen M M. Improving evoked response audiometry with special reference to the use of machine scoring. Audiology 1974; 13: 33–65
  • Schoonhoven R, Boden C, jr, Verbunt J PA, de Munck J C. A whole-head MEG study of the amplitude modulation following response: phase coherence, group delays and dipole source analysis. Paper presented at 17th meeting of the Evoked Response Audiometry Study Group, VancouverCanada 2001
  • Schuster A. On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena. Terrestrial Magnetism Atmospheric Electricity 1898; 3: 13–41
  • Schwender D, Madler C, Klasing S, Peter K, Poppel E. Anesthetic control of 40-Hz brain activity and implicit memory. Consciousness Cognition 1994; 3: 129–147
  • Serafini G, Brizi S. Usefulness of auditory steady-state responses (SSR 40Hz) in post trauma coma patients. Monitoring of stimulus-induced 40Hz brain oscillations, G. Litscher. Pabst Science Publishers, Scottsdale 1998; 215–223
  • Spydell J D, Pattee G, Goldie W D. The 40 Hertz auditory event-related potential: normal values and effects of lesions. Electro-encephalogr Clin Neurophysiol 1985; 62: 193–202
  • Stapells D R, Linden D, Suffield J B, Hamel G, Picton T W. Human auditory steady state potentials. Ear Hear 1984; 5: 105–113
  • Stapells D R, Makeig S, Galambos R. Auditory steady-state responses: threshold prediction using phase coherence. Electro-encephalogr Clin Neurophysiol 1987; 67: 260–270
  • Stapells D R, Galambos R, Costello J A, Makeig S. Inconsistency of auditory middle latency and steady-state responses in infants. Electroencephalogr Clin Neurophysiol 1988; 71: 289–295
  • Stapells D, Picton T, Durieux-Smith A. Electrophysiologic measures of frequency-specific auditory function. Principles and applications of auditory evoked potentials, J. T. Jacobson. Allyn and Bacon, New York 1994; 251–283
  • Stefanatos G A, Green G G, Ratcliff G G. Neurophysiological evidence of auditory channel anomalies in developmental dysphasia. Arch Neurol 1989; 46: 871–875
  • Stefanatos G A, Foley C, Grover W, Doherty B. Steady-state auditory evoked responses to pulsed frequency modulations in children. Electroencephalogr Clin Neurophysiol 1997; 104: 31–42
  • Steriade M, Amzica F, Contreras D. Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci 1996; 16: 392–417
  • Steriade M, Timofeev L, Durmuller N, Grenier F. Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30–40 Hz) spike bursts. J Neurophysiol 1998; 79: 483–490
  • Stürzebecher E, Cebulla M. Objective detection of auditory evoked potentials. Comparison of several statistical tests in the frequency domain on the basis of near-threshold ABR data. Scand Audiol 1997; 26: 7–14
  • Stürzebecher E, Cebulla M, Wernecke K. Objective response detection in the frequency domain: comparison of several q-sample tests. Audiol Neurootol 1999; 4: 2–11
  • Stürzebecher E, Cebulla M, Pschirrer U. Efficient stimuli for recording of the amplitude modulation following response. Audiology 2001; 40: 63–68
  • Suzuki T, Hirabayashi M. Age-related morphological changes in auditory middle-latency response. Audiology 1987; 26: 312–320
  • Suzuki T, Kobayashi K. An evaluation of 40-Hz event-related potentials in young children. Audiology 1984; 23: 599–604
  • Szyfter W, Dauman R, de Sauvage R C. 40 Hz middle latency responses to low frequency tone pips in normally hearing adults. J Otolaryngol 1984; 13: 275–280
  • Tang Y, Norcia A M. Improved processing of the steady-state evoked potential. Electroencephalogr Clin Neurophysiol 1993; 88: 323–334
  • Tang Y, Norcia A M. An adaptive filter for steady-state evoked responses. Electroencephalogr Clin Neurophysiol 1995; 96: 268–277
  • Tennigkeit F, Ries C R, Schwarz D W, Puil E. Isoflurane attenuates resonant responses of auditory thalamic neurons. J Neurophysiol 1997; 78: 591–596
  • Thornton C, Barrowcliffe M P, Konieczko K M. The auditory evoked response as an indicator of awareness. Br J Anaesth 1989; 63: 113–115
  • Valdes J L, Perez-Abalo M C, Martin V. Comparison of statistical indicators for the automatic detection of 80 Hz auditory steady state responses. Ear Hear 1997; 18: 420–429
  • Van der Reijden C S, Mens L HM, Snik A FM. Comparing signal-to-noise ratios of amplitude modulation following responses from four EEG derivations in awake normally hearing adults. Audiology 2001; 40: 202–207
  • Van der Werff K R, Brown C J, Gienapp B A, Schmidt Clay K M. Comparison of auditory steady-state response and auditory brain-stem response thresholds in children. J Am Acad Audiol 2002; 13: 227–235
  • Victor J D, Mast J. A new statistic for steady-state evoked potentials. Electroencephalogr Clin Neurophysiol 1991; 78: 378–388
  • Victor J D, Mast J. A new statistic for steady-state evoked potentials [published erratum appears in. Electroencephalogr Clin Neurophysiol 1991; 1992: 83–270
  • Viemeister N F. Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 1979; 66: 1364–1380
  • Woldorff M G, Hansen J C, Hillyard S A. Evidence for effects of selective attention in the middle latency range of the human auditory event-related brain potential. Electroencephalogr Clin Neurophysiol Suppl 1987; 40: 146–154
  • Wong W YS, Stapells D R. Brainstem and cortical mechanisms underlying the binaural masking level difference in humans: an auditory steady state response study. Paper presented at 17th meeting of the Evoked Response Audiometry Study Group, VancouverCanada 2001
  • Yvert B, Crouzeix A, Bertrand O, Seither-Preisler A, Pantev C. Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex. 2001; 11: 411–423
  • Zar J H. Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River 1999
  • Zurek P M. Detectability of transient and sinusoidal otoacoustic emissions. Ear Hear 1992; 13: 307–310

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.