354
Views
27
CrossRef citations to date
0
Altmetric
Original Article

The adaptive pattern of the late auditory evoked potential elicited by repeated stimuli in cochlear implant users

, , &
Pages 277-285 | Received 08 Apr 2009, Accepted 09 Sep 2009, Published online: 15 Feb 2010

References

  • Alcaini M., Giard M.H., Thevenet M., Pernier J. 1994. Two separate frontal components in the N1 wave of the human auditory evoked response. Psychophysiology, 31, 611–615.
  • Abbas P.J. 1984. Long-term adaptation in hearing impaired ears. Hear Res, 14, 29–38.
  • Babalian A.L., Ryugo D.K., Rouiller E.M. 2003. Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve. Exp Brain Res, 153, 452–460.
  • Barry R.J., Cocker K.I., Anderson J.W., Gordon E., Rennie C. 1992. Does the N100 evoked potential really habituate? Evidence from a paradigm appropriate to a clinical setting. Int J Psychophysiol, 13, 9–16.
  • Boettcher F.A., Salvi R.J., Saunders S.S. 1990. Recovery from short-term adaptation in single neurons in the cochlear nucleus. Hear Res, 48, 125–144.
  • Bourbon W.T., Will K.W., Gary H.E. Jr., Papanicolaou A.C. 1987. Habituation of auditory event-related potentials: A comparison of self-initiated and automated stimulus trains. Electroencephalography and Clinical Neurophysiology, 66, 160–166.
  • Brix R., Gedlicka W. 1991. Late cortical auditory potentials evoked by electrostimulation in deaf and cochlear implant patients. Euro Arch Otorhinolaryngol, 248, 442–444.
  • Brown C.J., Abbas P.J., Gantz B. 1990. Electrically evoked whole-nerve action potentials: Data from human cochlear implant users. J Acoust Soc Am, 88, 1385–1391.
  • Budd T.W., Barry R.J., Gordon E., Rennie C., Michie P.T. 1998. Decrement of the N1 auditory event-related potential with stimulus repetition: Habituation vs. refractoriness. Int J Psychophysiol, 31, 51–68.
  • Burkard R., McGee J., Walsh E.J. 1996. Effects of stimulus rate on the feline brain-stem auditory evoked response during development. II. peak amplitudes. J Acoust Soc Am, 100, 991–1002.
  • Butler R.A. 1968. Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. J Acoust Soc Am, 44, 945–950.
  • Ceponiene R., Cheour M., Naatanen R. 1998. Interstimulus interval and auditory event-related potentials in children: evidence for multiple generators. Electroencephalography and Clinical Neurophysiology, 108, 345–354.
  • Chimento T.C., Schreiner C.E. 1991. Adaptation and recovery from adaptation in single fiber responses of the cat auditory nerve. J Acoust Soc Am, 90, 263–273.
  • Clay K.M., Brown C.J. 2007. Adaptation of the electrically evoked compound action potential (ECAP) recorded from nucleus CI24 cochlear implant users. Ear Hear, 28, 850–861.
  • Debener S., Hine J., Bleeck S., Eyles J. 2008. Source localization of auditory evoked potentials after cochlear implantation. Psychophysiology, 45, 20–24.
  • Debener S., Makeig S., Delorme A., Engel A.K. 2005. What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis. Brain Res, 22, 309–321.
  • Delgutte B. 1997. Auditory neural processing of speech. W.J. Hardcastle, J. Laver, The Handbook of Phonetic Sciences. Oxford: Blackwell, 507–538.
  • Delorme A., Makeig S. 2004. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods, 134, 9–21.
  • Eggermont J.J., Ponton C.W., Don M., Waring M.D., Kwong B. 1997. Maturational delays in cortical evoked potentials in cochlear implant users. Acta Oto-Laryngologica, 117, 161–163.
  • Firszt J.B., Chambers R.D., Kraus N., Reeder R.M. 2002. Neurophysiology of cochlear implant users I: Effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response. Ear Hear, 23, 502–515.
  • Fitzpatrick D.C., Kuwada S., Kim D.O., Parham K., Batra R. 1999. Responses of neurons to click-pairs as simulated echoes: Auditory nerve to auditory cortex. J Acoust Soc Am, 106, 3460–3472.
  • Fruhstorfer H. 1971. Habituation and dishabituation of the human vertex response. Electroencephalography and Clinical Neurophysiology, 30, 306–312.
  • Fruhstorfer H., Soveri P., Jarvilehto T. 1970. Short-term habituation of the auditory evoked response in man. Electroencephalography and Clinical Neurophysiology, 28, 153–161.
  • Gaumond R.P., Molnar C.E., Kim D.O. 1982. Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability. J Neurosci, 48, 856–873.
  • Giard M.H., Perrin F., Echallier J.F., Thevenet M., Froment J.C. 1994. Dissociation of temporal and frontal components in the human auditory N1 wave: A scalp current density and dipole model analysis. Electroencephalography and Clinical Neurophysiology, 92, 238–252.
  • Gilley P.M., Sharma A., Dorman M., Finley C.C., Panch A.S. 2006. Minimization of cochlear implant stimulus artifact in cortical auditory evoked potentials. Clinical Neurophysiology, 117, 1772–1782.
  • Gilley P.M., Sharma A., Dorman M., Martin K. 2005. Developmental changes in refractoriness of the cortical auditory evoked potential. Clin Neurophysiol, 116, 648–657.
  • Gilley P.M., Sharma A., Dorman M. 2008. Cortical reorganization in children with cochlear implants. Brain Res, 1239, 56–65.
  • Guiraud J., Gallego S., Arnold L., Boyle P., Truy E., 2007. Effects of auditory pathway anatomy and deafness characteristics? Part 2: On electrically evoked late auditory responses. Hear Res, 228, 44–57.
  • Hardie N.A., Shepherd R.K. 1999. Sensorineural hearing loss during development: Morphological and physiological response of the cochlea and auditory brainstem. Hear Res, 128, 147–165.
  • Hari R., Kaila K., Katila T., Tuomisto T., Varpula T. 1982. Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: Implications for their neural generation. Electroencephalography and Clinical Neurophysiology, 54, 561–569.
  • Hay-McCutcheon M.J., Brown C.J., Abbas P.J. 2005. An analysis of the impact of auditory-nerve adaptation on behavioral measures of temporal integration in cochlear implant recipients. J Acoust Soc Am, 118, 2444–2457.
  • Hoppe U., Rosanowski F., Iro H., Eysholdt U. 2001. Loudness perception and late auditory evoked potentials in adult cochlear implant users. Scand Audiol, 30, 119–125.
  • Javel E. 1996. Long-term adaptation in cat auditory-nerve fiber responses. J Acoust Soc Am, 99, 1040–1052.
  • Kelly A.S., Purdy S.C., Thorne P.R. 2005. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users. Clin Neurophysiol, 116, 1235–1246.
  • Kileny P.R. 2007. Evoked potentials in the management of patients with cochlear implants: Research and clinical applications. Ear Hear, 28(2 Suppl), 124S–127S.
  • Knight R.T., Scabini D., Woods D.L., Clayworth C. 1988. The effects of lesions of superior temporal gyrus and inferior parietal lobe on temporal and vertex components of the human AEP. Electroencephalography and Clinical Neurophysiology, 70, 499–509.
  • Kral A., Hartmann R., Tillein J., Heid S., Klinke R. 2000. Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cerebral Cortex, 10, 714–726.
  • Litvak L.M., Smith Z.M., Delgutte B., Eddington D.K. 2003. Desynchronization of electrically evoked auditory-nerve activity by high-frequency pulse trains of long duration. J Acoust Soc Am, 114, 2066–2078.
  • Kuriki S, Kanda S, Hirata Y. 2006. Effects of musical experience on different components of MEG responses elicited by sequential piano-tones and chords. J Neurosci, 26, 4046–4053.
  • Loquet G., Pelizzone M., Valentini G., Rouiller E.M. 2004. Matching the neural adaptation in the rat ventral cochlear nucleus produced by artificial (electric) and acoustic stimulation of the cochlea. Audiol Neurootol, 9, 144–159.
  • Mariam M., Delb W., Corona-Strauss F.I., Bloching M., Strauss D.J. 2009. Comparing the habituation of late auditory evoked potentials to loud and soft sound. Physiol Meas, 30, 141–153.
  • Makhdoum M.J., Groenen P.A., Snik A.F., van den Broek P. 1998. Intra and interindividual correlations between auditory evoked potentials and speech perception in cochlear implant users. Scand Audiol, 27, 13–20.
  • Martin B.A., Tremblay K.L., Korczak P. 2008. Speech evoked potentials: From the laboratory to the clinic. Ear Hear, 29, 285–313.
  • Maurer J., Collet L., Pelster H., Truy E., Gallégo S. 2002. Auditory late cortical response and speech recognition in Digisonic cochlear implant users. Laryngoscope, 112, 2220–2224.
  • McNeill C., Sharma M., Purdy S.C., Agung K. 2007. Cortical auditory evoked responses from an implanted ear after 50 years of profound unilateral deafness. Cochlear Implants Int, 8, 189–199.
  • Megela A.L., Teyler T.J. 1979. Habituation and the human evoked potential. J Comp Psychol, 93, 1154–1170.
  • Meyer K., Rouiller E.M., Loquet G. 2007. Direct comparison between properties of adaptation of the auditory nerve and the ventral cochlear nucleus in response to repetitive clicks. Hear Res, 228, 144–155.
  • Micheyl C., Carbonnel O., Collet L. 1995. Medial olivocochlear system and loudness adaptation: differences between musicians and non-musicians. Brain Cogn, 29, 127–136.
  • Miller C.A., Abbas P.J., Robinson B.K. 2001. Response properties of the refractory auditory nerve fiber. J Assoc Res Otolaryngol, 2, 216–232.
  • Näätänen R., Picton T. 1987. The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24, 375–425.
  • Näätänen R., Teder W., Alho K., Lavikainen J. 1992. Auditory attention and selective input modulation: A topographical ERP study. Neuroreport, 3, 493–496.
  • Parham K., Zhao H.B., Kim D.O. 1996. Responses of auditory nerve fibers of the unanaesthetized decerebrate cat to click pairs as simulated echoes. J Neurophysiol, 76, 17–29.
  • Parham K., Zhao, H.B., Ye Y., Kim D.O. 1998. Responses of anteroventral cochlear nucleus neurons of the unanesthetized decerebrate cat to click pairs as simulated echoes. Hear Res, 125, 131–146.
  • Ponton C.W., Don M., Eggermont J.J., Waring M.D., Masuda A. 1996. Maturation of human cortical auditory function: Differences between normal-hearing children and children with cochlear implants. Ear Hear, 17, 430–437.
  • Ponton C.W., Don M., Waring M.D., Eggermont J.J., Masuda A. 1993. Spatio-temporal source modeling of evoked potentials to acoustic and cochlear implant stimulation. Electroencephalography and Clinical Neurophysiology, 88, 478–93.
  • Prosser S., Arslan E., Michelini S. 1981. Habituation and rate effect in the auditory cortical potentials evoked by trains of stimuli. Arch Otorhinolaryngol, 233, 179–187.
  • Ritter W., Vaughan H.G. Jr., Costa L.D. 1968. Orienting and habituation to auditory stimuli: A study of short term changes in average evoked responses. Electroencephalography and Clinical Neurophysiology, 25, 550–556.
  • Rosburg T., Trautner P., Korzyukov O.A., Boutros N.N., Schaller C. . 2004. Short-term habituation of the intracranially recorded auditory evoked potentials P50 and N100. Neurosci Lett, 372, 245–249.
  • Sharma A., Dorman M.F., Spahr A.J. 2002. A sensitive period for the development of the central auditory system in children with cochlear implants: Implications for age of implantation. Ear Hear, 23, 532–539.
  • Sharma A., Marsh C.M., Dorman M.F. 2000. Relationship between N1 evoked potential morphology and the perception of voicing. J Acoust Soc Am, 108, 3030–3035.
  • Shepherd R.K., Roberts L.A., Paolini A.G. 2004. Long-term sensorineural hearing loss induces functional changes in the rat auditory nerve. Eur J Neurosci, 20, 3131–3140.
  • Shore S.E. 1995. Recovery of forward-masked responses in ventral cochlear nucleus neurons. Hear Res, 82, 31–43.
  • Simons L.A., Dunlop C.W., Webster W.R., Aitkin L.M. 1966. Acoustic habituation in cats as a function of stimulus rate and the role of temporal conditioning of the middle ear muscles. Electroencephalography and Clinical Neurophysiology, 20, 485–493.
  • Sly D.J., Heffer L.F., White M.W., Shepherd R.K., Birch M.G. . 2007. Deafness alters auditory nerve fibre responses to cochlear implant stimulation. Euro J Neurosci, 26, 510–522.
  • Smith R.L. 1977. Short-term adaptation in single auditory nerve fibers: Some post-stimulatory effects. J Neurophysiol, 40, 1098–1111.
  • Smith R.L., Brachman M.L. 1982. Adaptation in auditory-nerve fibers: A revised model. Biol Cybern, 44, 107–120.
  • Sokolov E.N., Nezlina N.I., Polianskii V.B., Evtikhin D.V. 2001. Orienting reflex: ‘targeting reaction’ and ‘searchlight of attention’. Neurosci Behav Physiol, 32, 347–362.
  • Soucek S., Mason S.M. 1992. Effects of adaptation on electrocochleography and auditory brain-stem responses in the elderly. Scand Audiol, 21, 149–152.
  • Sussman E., Steinschneider M., Gumenyuk V., Grushko J., Lawson K. 2008. The maturation of human evoked brain potentials to sounds presented at different stimulus rates. Hear Res, 236, 61–79.
  • Thornton A.R., Slaven A. 1993. Auditory brainstem responses recorded at fast stimulation rates using maximum length sequences. Br J Audiol, 27, 205–210.
  • Tremblay K., Kraus N., McGee T., Ponton C., Otis B. 2001. Central auditory plasticity: Changes in the N1-P2 complex after speech-sound training. Ear Hear, 22, 79–90.
  • Walton J.P., Frisina R.D., Meierhans L.R. 1995. Sensorineural hearing loss alters recovery from short-term adaptation in the C57BL/6 mouse. Hear Res, 88, 19–26.
  • Westerman L.A., Smith R.L. 1984. Rapid and short-term adaptation in auditory nerve responses. Hear Res, 15, 249–260.
  • Woods D.L., Clayworth C.C., Knight R.T., Simpson G.V., Naeser M.A. 1987. Generators of middle- and long-latency auditory evoked potentials: Implications from studies of patients with bitemporal lesions. Electroencephalography and Clinical Neurophysiology, 68, 132–148.
  • Zhang F., Miller C.A., Robinson B.K., Abbas P.J., Hu N. 2007. Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains. J Assoc Res Otolaryngol, 83, 356–372.
  • Zhang F., Eliassen E., Anderson J.M., Scheifele P., Brown, D. 2009. Time course of the late latency auditory evoked response to repeated stimuli. J Am Acad Audiol, 20, 239–250.
  • Zhou R., Abbas P.J., Assouline J.G. 1995. Electrically evoked auditory brainstem response in peripherally myelin-deficient mice. Hear Res, 88, 98–106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.