227
Views
5
CrossRef citations to date
0
Altmetric
Original Article

The developmental effects of extremely low frequency electric fields on visual and somatosensory evoked potentials in adult rats

, , , , &
Pages 65-74 | Received 15 Jul 2014, Accepted 11 Nov 2014, Published online: 11 Dec 2014

References

  • Agar, A., Kucukatay, V., Yargicoglu, P., et al. (2000). The effect of sulfur dioxide inhalation on visual evoked potentials, antioxidant status and lipid peroxidation in alloxan-induced diabetic rats. Arch. Environ. Contam. Toxicol. 39:257–264
  • Akpinar, D., Yargicoglu, P., Derin, N., et al. (2007). Effect of aminoguanidine on visual evoked potentials (VEPs), antioxidant status and lipid peroxidation in rats exposed to chronic restraint stress. Brain Res. 1186:87–94
  • Akpinar, D., Ozturk, N., Ozen, S., et al. (2012). The effect of different strengths of extremely low-frequency electric fields on antioxidant status, lipid peroxidation, and visual evoked potentials. Electromagn. Biol. Med. 31:436–448
  • Aminoff, M. J., Goodin, D. S. (1994). Visual evoked potentials. J. Clin. Neurophysiol. 11:493–499
  • Araki, S., Murata, K. (1993). Determination of evoked potentials in occupational and environmental medicine: A review. Environ. Res. 63:133–147
  • Aydin, M. A., Comlekci, S., Ozguner, M., et al. (2006). The influence of continuous exposure to 50 Hz electric field on nerve regeneration in a rat peroneal nerve crush injury model. Bioelectromagnetics. 27:401–413
  • Aydin, S., Yargicoglu, P., Derin, N., et al. (2005). The effect of chronic restraint stress and sulfite on visual evoked potentials (VEPs): Relation to lipid peroxidation. Food Chem. Toxicol. 43:1093–1101
  • Bediz, C. S., Baltaci, A. K., Mogulkoc, R., Oztekin, E. (2006). Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J. Exp. Med. 208:133–140
  • Benov, L. C., Antonov, P. A., Ribarov, S. R. (1994). Oxidative damage of the membrane lipids after electroporation. Gen. Physiol. Biophys. 13:85–97
  • Bernhardt, J. H. (1979). The direct influence of electromagnetic fields on nerve- and muscle cells of man within the frequency range of 1 Hz to 30 Hz. Radiat. Environ. Biophys. 16:309–323
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254
  • Canu, M. H., Langlet, C., Dupont, E., Falempin, M. (2003). Effects of hypodynamia–hypokinesia on somatosensory evoked potentials in the rat. Brain Res. 978:162–168
  • Celesia, G. G. (1984). Evoked potentials techniques in the evaluation of visual function. J. Clin. Neurophysiol. 1:55–76
  • Chiappa, K. H. (1983). Evoked Potentials in Clinical Medicine. New York, NY: Raven Press
  • Chiappa, K. H., Ropper, A. H. (1982). Evoked potentials in clinical medicine (second of two parts). New Eng. J. Med. 306:1205–1211
  • Cieslar, G., Sowa, P., Sieron, A. (2003). Influence of high voltage static electric field on antioxidant enzymes activity in male rats. In: Proceedings of the 25th Annual İnternational Conference of the IEEE, Engineering in Medicine and Biology Society. Vol. 4, pp. 17–21
  • Cossarizza, A., Capri, M., Salvioli, S., et al. (1993). Electromagnetic fields affect cell proliferation and cytokine production inhuman cells. In: Blank, M. Electricity and Magnetism in Biology and Medicine. San Francisco: San Francisco Press. pp. 640–642
  • Cracco, R. Q. (1973). Spinal evoked response: Peripheral nerve stimulation in man. Electroenceph. Clin. Neurophysiol. 35:379–386
  • Derin, N., Akpinar, D., Yargicoglu, P., et al. (2009). Effect of alpha-lipoic acid on visual evoked potentials in rats exposed to sulfite. Neurotoxicol. Teratol. 31:34–39
  • Desmedt, J. E., Cheron, G. (1980). Central somatosensory conduction in man: Neural generators and interpeak latencies of the far-field components recorded from neck and right or left scalp and ear lobes. Electroencephalogr. Clin. Neurophysiol. 50:382–403
  • Dorfman, L. J., Perkash, I., Bosley, T. M., et al. (1980). Use of cerebral evoked potentials to evaluate spinal somatosensory function in patients with traumatic and surgical myelopathies. J. Neurosurg. 52:654–660
  • Dowman, R., Rosenfeld, P. (1985). Effects of naloxane and repeated stimulus presentation on corticol somatosensory evoked potential (SEP) amplitude in the rat. Exp. Neurol. 89:9–23
  • Dundar, B., Cesur, G., Comlekci, S., et al. (2009). The effect of the prenatal and post-natal long-term exposure to 50 Hz electric field on growth, pubertal development and IGF-1 levels in female Wistar rats. Toxicol. Ind. Health. 25:479–487
  • Dyer, R. S., Clark, C. C., Boyes, W. K. (1987). Surface distribution of flash-evoked and pattern reversalevoked potentials in hooded rats. Brain Res. Bull. 18:227–234
  • Fukui, K., Omoi, N., Hayasaka, T., et al. (2002). Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann. N. Y. Acad. Sci. 959:275–284
  • Fukui, K., Onodera, K., Shinkai, T., et al. (2001). Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann. N. Y. Acad. Sci. 928:168–175
  • Gambi, D., Fulgente, T., Melchionda, D., Onofrj, M. (1996). Evoked potential (EP) alterations in experimental allergic encephalomyelitis (EAE): Early delays and latency reductions without plaques. Ital. J. Neurol. Sci. 17:23–33
  • Gok, D. K., Akpinar, D., Yargicoglu, P., et al. (2014). Effects of extremely low frequency electric fields at different intensity and exposure duration on mismatch negativity. Neuroscience. 272:154–166
  • Graham, C., Cook, M. R., Cohen, H. D., et al. (1999). Human exposure to 60-Hz magnetic fields: neurophysiological effects. Int. J. Psychophysiol. 33:169–175
  • Guler, G., Seyhan, N., Aricioglu, A. (2006). Effects of static and 50 Hz alternating electric fields on superoxide dismutase activity and TBARS levels in guinea pigs. Gen. Physiol. Biophys. 25:177–193
  • Guler, G., Turkozer, Z., Aricioglu, A. (2007). Electric field effects on guinea pig serum: The role of free radicals. Electromagn. Biol. Med. 26:207–223
  • Hall, R. D., Lindholm, E. P. (1974). Organization of motor and somatosensory neocortex in the albino rat. Brain Res. 66:23–38
  • Halliday, A. M. (1976). Visually evoked responses in optic nerve disease. Trans. Ophthal. Soc. UK. 96:372–376
  • Halliday, A. M., McDonald, W. I., Mushin, J. (1972). Delayed visual evoked response in optic neuritis. Lancet. 1:982–985
  • Harakawa, S., Inoue, N., Hori, T., et al. (2005). Effects of a 50 Hz electric field on plasma lipid peroxide level and antioxidant activity in rats. Bioelectromagnetics. 26:589–594
  • Herr, D. W., Graff, J. E., Moser, V. C., et al. (2007). Inhalational exposure to carbonyl sulfide produces altered brainstem auditory and somatosensory-evoked potentials in Fischer 344N rats. Toxicol. Sci. 95:118–135
  • Hetzler, B. E., Boyes, W. K., Creason, J., et al. (1988). Temperature dependent changes in visual evoked potentials of rats. Electroenceph. Clin. Neurophysiol. 70:137–154
  • Holder, G. E. (2004). Electrophysiological assessment of optic nerve disease. Eye (Lond). 18:1133–1143
  • Hudetz, A. G., Vizuete, J. A., Imas, O. A. (2009). Desflurane selectively suppresses long-latency cortical neuronal response to flash in the rat. Anesthesiology. 111:231–239
  • Hudnell, H. K., Boyes, W. K. (1991). The comparability of rat and human visual-evoked potentials. Neurosci. Biobehav. Rev. 15:159–164
  • Iwamura, Y., Fujii, Y., Kamei, C. (2003). The effects of certain H1-antagonists on visual evoked potential in rats. Brain Res. Bull. 61:393–398
  • Jaffe, R. A., Laszewski, B. L., Carr, D. B., Phillips, R. D. (1980). Chronic exposure to a 60-Hz electric field: Effects on synaptic transmission and peripheral nerve function in the rat. Bioelectromagnetics. 1:131–147
  • Jain, A., Martensson, J., Stole, E., et al. (1991). Glutathione deficiency leads to mitochondrial damage in the brain. Proc. Natl. Acad. Sci. USA. 88:1913–1917
  • Kanda, F., Jinnai, K., Tada, K., Fujita, T. (1986). Somatosensory evoked potentials in rats with uremia. Jpn. J. Med. 28:687–691
  • Kheifets, L., Renew, D., Sias, G., Swanson, J. (2010). Extremely low frequency electric fields and cancer: Assessing the evidence. Bioelectromagnetics. 31:89–101
  • Kucukatay, V., Agar, A., Yargicoglu, P., et al. (2003). Changes in somatosensory evoked potentials, lipid peroxidation, and antioxidant enzymes in experimental diabetes: Effect of sulfur dioxide. Arch. Environ. Health. 58:14–22
  • Lee, B. C., Johng, H. M., Lim, J. K., et al. (2004). Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: A chemiluminescence study. J. Photochem. Photobiol. B. 73:43–48
  • Lehman, D. M., Harrison, J. M. (2002). Flash visual evoked potentials in the hypomyelinated mutant mouse shiverer. Doc. Ophthalmol. 104:83–95
  • Lupke, M., Rollwitz, J., Simkó, M. (2004). Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermadiates in human umbilical cord blood-derived monocytes and in mono mac 6 cells. Free Radic. Res. 38:985–993
  • Lyskov, E., Juutilainen, J., Jousmaki, V., et al. (1993). Influence of short-term exposure of magnetic field on the bioelectrical processes of the brain and performance. Int. J. Psychophysiol. 14:227–231
  • Margonato, V., Veicsteinas, A., Conti, R., et al. (1993). Biologic effects of prolonged exposure to ELF electromagnetic fields in rats. I. 50 Hz electric fields. Bioelectromagnetics. 14:479–493
  • Marino, A. A., Becker, R. O., Ullrich, B. (1976). The effect of continuous exposure to low frequency electric fields on three generations of mice: A pilot study. Experientia. 32:565–566
  • Marino, A. A., Morris, D. M., Arnold, T. (1986). Electrical treatment of lewis lung carcinoma in mice. J. Surg. Res. 41:198–201
  • Matsumoto, K., Yobimoto, K., Huong, N. T., et al. (1999). Psychological stress-induced enhancement of lipid peroxidation via nitric oxide systems and its modulation by anxiolytic and anxiogenic drug in mice. Brain Res. 839:74–84
  • Mazzucchelli, A., Conte S., D’Olimpio, F., et al. (1995). Ultradian rhythms in the N1-P2 amplitude of thevisual evoked potential in two inbred strains of mice: DBA/2J andC57BL/6. Behav. Brain. Res. 67:81–84
  • Onofrj, M., Harnois, C., Bodis-Wollner, I. (1985). The hemispheric distribution of the transient rat VEP: A comparison of flash and pattern stimulation. Exp. Brain Res. 59:427–433
  • Otto, D., Hudnell, H. K. (1993). The use of visual and chemosensory evoked potentials in environmental and occupational health. Environ. Res. 62:159–171
  • Otto, D., Hudnell, K., Boyes, W., et al. (1988). Electrophysiological measures of visual and auditory function as indices of neurotoxicity. Toxicology. 49:205–218
  • Panjwani, G. D., Mustafa, M. K., Muhailan, A., et al. (1991). Effect of hyperthermia on somatosensory evoked potentials in the anaesthetized rat. Electroencephalogr. Clin. Neurophysiol. 80:384–391
  • Portet, R., Cabanes, J. (1988). Development of young rats and rabbits exposed to a strong electric field. Bioelectromagnetics. 9:95–104
  • Repacholi, M. H., Greenebaum, B. (1999). Interaction of static and extremely low frequency electric and magnetic fields with living systems: Health effects and research needs. Bioelectromagnetics. 20:133–160
  • Ridder, W. H., Nusinowitz, S. (2006). The visual evoked potential in the mouse – origins and response characteristics. Vision Res. 46:902–913
  • Rollwitz, J., Lupke, M., Simkó, M. (2004). Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochim. Biophys. Acta (BBA) – General Subjects. 1674:231–238
  • Rommereim, D. N., Kaune, W. T., Anderson, L. E., Sikov M. R. (1989). Rats reproduce and rear litters during chronic exposure to 150-kV/m, 60-Hz electric fields. Bioelectromagnetics. 10:385–389
  • Rommereim, D. N., Kaune, W. T., Buschbom, R. L., et al. (1987). Reproduction and development in rats chronologically exposed to 60-Hz electric fields. Bioelectromagnetics. 8:243–258
  • Rommereim, D. N., Rommereim, R. L., Sikov, M. R., et al. (1990). Reproduction, growth, and development of rats during chronic exposure to multiple field strengths of 60-Hz electric fields. Fundam. Appl. Toxicol. 14:608–621
  • Romodanova, E. A., Paranich, A. V., Chaikina, L. A. (1990). Effect of chronic effect of theelectrostatic field on various biochemical indicators of the tissues. Fiziol. Zh. 36:30–34
  • Seto, Y. J., Majeau-Chargois, D., Lymangrover, J. R., et al. (1984). Investigation of fertility and in utero effects in rats chronically exposed to a high-intensity 60-Hz electric field. IEEE Trans. Biomed. Eng. 31:693–702
  • Seyhan, N., Guler, G. (2006). Review of in vivo static and ELF electric fields studies performed at Gazi Biophysics Department. Electromagn. Biol. Med. 25:307–323
  • Shapiro, S. M. (2002). Somatosensory and brainstem auditory evoked potentials in the Gunn rat model of acute bilirubin neurotoxicity. Pediatr. Res. 52:844–849
  • Shaw, N. A., Synek, V. M. (1985). Somatosensory evoked potentials following stimulation of tibial, peroneal and sural nerves using four different montages. Clin. Electroenceph. 16:149–156
  • Sienkiewicz, Z. J., Cridland, N. A., Kowalczuk, C. I., Saunders, R. D. (1993). Biological effects of electromagnetic fields and radiations. In: Stone, W. R., Hyde, G. The Review of Radio Science: 1990–1992. Oxford, UK: Oxford University Press. pp. 737–770
  • Sikov, M. R., Montgomery, L. D., Smith, L. G., Phillips, R. D. (1984). Studies on prenatal and postnatal development in rats exposed to 60-Hz electric fields. Bioelectromagnetics. 5:101–112
  • Simkó, M., Droste, S., Kriheuber, R., Weiss, D. G. (2001). Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields. Eur. J. Cell Biol. 80:562–566
  • Sisson, D. F., Siegel, J. (1989). Chloral hydrate anesthesia: EEG power spectrum analysis and effects on VEPs in the rat. Neurotoxicol. Teratol. 11:51–56
  • Strain, G. M., Tedford, B. L. (1993). Flash and pattern reversal visual evoked potentials in C57BL/6J and B6CBAF1/J mice. Brain Res. Bull. 32:57–63
  • Tenforde, T. S. (1991). Biological interactions of extremely-low-frequency electric and magnetic fields. Bioelectrochem. Bioenerg. 25:1–17
  • Tenforde, T. S. (1993). Cellular and molecular pathways of extremely-low frequency electromagnetic field interactions with living systems. In: Blank, M. Electricity and Magnetism in Biology and Medicine. San Francisco, CA: San Francisco Press. pp. 1–8
  • Tenforde, T. S. (1996). Interaction of ELF magnetic fields with living systems. In: Polk, C., Postow, E. Biological Effects of Electromagnetic Fields. Boca Raton, FL: CRC Press. pp. 185–230
  • Tobimatsu, S., Celesia, G. G. (2006). Studies of human visual pathophysiology with visual evoked potentials. Clin. Neurophysiol. 117:1414–1433
  • Todorava, A., Bayagieva, M., Yosifov, T. (1992). Effect of endothelin on somatosensory evoked potentials in rats. Neurophyschobiology. 26:108–112
  • Tsuji, S., Lueders, H., Lesser, R. P., et al. (1984). Subcortical and cortical somatosensory potentials evoked by posterior tibial nerve stimulation; normative values. Electroenceph. Clin. Neurophysiol. 59:214–228
  • Valberg, P. A., Kavet, R., Rafferty, C. N. (1997). Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat. Res. 148:2–21
  • Wasowicz, W., Neve, J., Peretz, A. (1993). Optimized steps in fluorometric determination of thiobarbituric acid-reactive substances in serum: Importance of extraction pH and influence of sample preservation and storage. Clin. Chem. 39:2522–2526
  • Watanabe, Y., Nakagawa, M., Miyakoshi, Y. (1997). Enhancement of lipid peroxidation in the liver of mice exposed to magnetic fields. Ind. Health. 35:285–290
  • Wolpaw, J. R., Seegal, R. F., Dowman, R. L., Satya-Murti, S. (1987). Chronic effects of 60 Hz electric and magnetic fields on primate central nervous system function. Final Report to the New York State Power Lines Project. New York
  • Yargicoglu, P., Agar, A., Gumuslu, S., et al. (1999). Age-related alterations in antioxidant enzymes, lipid peroxide levels, and somatosensory-evoked potentials: Effect of sulfur dioxide. Arch. Environ. Contam. Toxicol. 37:554–560
  • Yargicoglu, P., Yaras, N., Agar, A., et al. (2003). The effect of vitamin E on stress-induced changes in visual evoked potentials (VEPs) in rats exposed to different experimental stress models. Acta Ophthalmol. Scan. 81:181–187
  • Yokus, B., Cakir, D. U., Akdag, M. Z., et al. (2005). Oxidative DNA damage in rats exposed to extremely low frequency electro magnetic fields. Free Radic. Res. 39:317–323

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.