244
Views
9
CrossRef citations to date
0
Altmetric
Reviews

The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR)

Pages 197-210 | Received 15 Jan 2015, Accepted 22 Jul 2015, Published online: 07 Oct 2015

References

  • Adams, R. J., Schwartz, A., Grupp, G., et al. (1982). High-affinity ouabain binding site and low dose positive inotropic effect in rat myocardium. Nature 296:167–169
  • Adey, W. R. (1981). Tissue interactions with non-ionizing electromagnetic field. Physiol. Rev. 61:435–514
  • Ahmed, I., Istivan, T., Cosic, I., et al. (2013). Evaluation of the effects of extremely low frequency (ELF) pulsed electromagnetic fields (PEMF) on survival of the bacterium Staphylococcus aureus. EPJ Nonlinear Biomed. Phys. 1:5
  • Akopyan, S. N., Ayrapetyan, S. N. (2005). A study of the specific conductivity of water exposed to constant magnetic field, electromagnetic field, and low-frequency mechanical vibration. Mol. Biophys. 50:255–259
  • Amyan, A. M., Ayrapetyan, S. N. (2004). On the modulation effect of pulsing and static magnetic fields and mechanical vibrations on barley seed hydration. Physiol. Chem. Phys. Med. NMR 36:69–84
  • Amyan, A. M., Ayrapetyan, S. N. (2006). The effect of EMF-pretreated distilled water on barley seed hydration and germination potential. In: Ayrapetyan S. N., Markov M. Bioelectromagnetics: Current Concepts. Dordrecht, The Netherlands: NATO Science Series Springer Press. pp. 65–86
  • Aslanimehr, M., Pahlevan, A. A. (2013). Effects of extremely low frequency electromagnetic fields on growth and viability of bacteria. Int. J. Res. Med. Health Sci. 1:2307–2083
  • Ayrapetyan, G., Grigoryan, A., Dadasyan, E., et al. (2007). The comparative study of the effects of 4 Hz electromagnetic fields, infrasound-treated and hydrogen peroxide containing physiological solutions on Na pump-induced inhibition of heart muscle contractility. The Environmentalist 27:483–488
  • Ayrapetyan, S. N. (1980). On the physiological significance of pump induced cell volume changes. Adv. Physiol. Sci. 23:67–82
  • Ayrapetyan, S. N. (1998). The application of the theory of metabolic regulation to pain. In: Ayrapetyan, S. N., Apkarian, A. V. Pain Mechanism and Management. Amsterdam, the Netherlands: IOS Press. pp. 3–14
  • Ayrapetyan, S. N. (2001). Na-K pump and Na:Ca exchanger as metabolic regulators and sensors for extraweak signals in neuromembrane. In: Ayrapetyan, S.N, North, A. C. T. Modern Problems of Cellular and Molecular Biophysics. Yerevan: Noyan Tapan. pp. 31–57
  • Ayrapetyan, S. N. (2006). Cell aqua medium as a preliminary target for the effect of electromagnetic fields. In: Ayrapetyan, S., Markov, M. Bioelectromagnetics: Current Concepts. Dordrecht, The Netherlands: NATO Science Series, Springer Press. pp. 31–64
  • Ayrapetyan, S. N. (2012). Cell hydration as a universal marker for detection of environmental pollution. Environ. J. 32:210–221
  • Ayrapetyan, S. N., Amyan, A. M., Ayrapetyan, G. S. (2006). The effect of static magnetic fields, low frequency electromagnetic fields and mechanical vibration on some physiochemical properties of water. In: Pollack, G., Cameron, I., Wheatley, D. Water in Cell Biology. Dordrecht, The Netherlands: Springer Press. pp. 151–164
  • Ayrapetyan, S. N., Arvanov, V. L. (1979). On the mechanism of the electrogenic sodium pump dependence of membrane chemosensitivity. Comp. Biochem. Physiol. 64:601–604
  • Ayrapetyan, S. N., Avanesian, A. S., Avetisian, T. H., et al. (1994). Physiological effects of magnetic fields may be mediated through actions on the state of calcium ions in solution. In: Carpenter, D., Ayrapetyan, S. Biological Effects of Electric and Magnetic Fields, Vol. 1. New York: Academic Press. pp. 181–192
  • Ayrapetyan, S. N., Dadasyan, E., Ayrapetyan, G., et al. (2009). The nonthermal effect of weak intensity millimeter waves on physicochemical properties of water solutions. Electromagn. Biol. Med. 28:331–341
  • Ayrapetyan, S. N., Heqimyan, A., Deghoyan, A. (2013). Cell dehydration as a mechanism of ketamine analgesic and anesthetic effects. J. Bioequiv. Bioavailab. 5:136–141
  • Ayrapetyan, S. N., Heqimyan, A., Nikoghosyan, A. (2012). Age-dependent brain tissue hydration, Ca exchange and their dose-dependent ouabain sensitivity. Bioequival. Bioavailab. 4:60–68
  • Ayrapetyan, S. N., Hunanian, A. Sh., Hakobyan, S. N. (2004). The 4 Hz EMF-treated physiological solution depress Ach-induced neuromembrane current. Bioelectromagnetics 25:397–399
  • Ayrapetyan, S. N., Musheghyan, G., Deghoyan, A. (2010). The brain tissue dehydration as a mechanism of analgesic effect of hypertonic physiological solution in rats. J. Int. Dental Med. Res. 3:93–98
  • Ayrapetyan, S. N., Rychkov, G. Y., Suleymanyan, M. A. (1988). Effects of water flow on transmembrane ionic currents in neurons of Helix pomatia and in squid giant axon. Comp. Biochem. Physiol. 89:179–186
  • Ayrapetyan, S. N., Suleymanyan, M. A., Sagian, A. A., et al. (1984). Autoregulation of electrogenic sodium pump. Cell. Mol. Neurobiol. 4:367–384
  • Azatian, K. V., White, A. R., Walker, R. J., et al. (1998). Cellular and molecular mechanisms of nitric oxideinduced heart muscle relaxation. Gen. Pharmacol. 30:543–553
  • Baghdasaryan, N. S., Mikayelyan, Y. R., Barseghyan, S. V., et al. (2012a). The density dependency of dark and low background radiation effects on water and water solution properties. Electromagn. Biol. Med. 31:87–100
  • Baghdasaryan, N. S., Mikayelyan, Y. R., Barseghyan, S., et al. (2012b). The modulating impact of illumination and background radiation on 8 Hz-induced infrasound effect on physicochemical properties of physiological solution. Electromagn. Biol. Med. 31:310–319
  • Baghdasaryan, N. S., Mikayelyan, Y. R., Nikoghosyan, A. K., et al. (2013). The impact of background radiation, illumination and temperature on EMF-induced changes of aqua medium properties. Electromagn. Biol. Med. 32:390–400
  • Baker, P. F., Blaustein, M. P., Hodgkin, A. L., et al. (1969). The influence of Ca on Na efflux in squid axons. J. Physiol. 200:431–458
  • Belyaev, A. (2005). Non-thermal biological effects of microwaves. Microwave Rev. 11:13–29
  • Belyaev, A. (2012). Evidence for Disruption by Modulation Role of Physical and Biological Variables in Bioeffects of Non-Thermal Microwaves for Reproducibility, Cancer Risk and Safety Standards. BioInitiative Working Group 15. www.bioinitiative.org
  • Binhi, V. N. (2012). Two types of magnetic biological effects: Individual and batch effects. Biophysics 57:237–243
  • Binhi, V. N., Rubin, A. B. (2007). The kT paradox and possible solutions. Electromagn. Biol. Med. 26:45–62
  • BioInitiative Report WHO Working Group (2012). A Rationale for Biologically-Based Public Exposure Standards for Electromagnetic Radiation. World Health Organization: Switzerland
  • Blanco, G. (2005). The Na/K-ATPase and its isozymes: What we have learned using the baculovirus expression system. Front. Biosci. 10:2397–2411
  • Blank, M., Goodman, R. M. (2012). Electromagnetic fields and health: DNA-based dosimetry. Electromagn. Biol. Med. 31:243–249
  • Blaustein, M. P., Lederer W. J. (1999). Na+/Ca2+ exchange. Its physiological implications. Physiol. Rev. 79:763–854
  • Blaustein, M. P., Mordecai, P., Blaustein J. Z., et al. (2009). The pump, the exchanger, and endogenous ouabain. Hypertension 53:291–298
  • Chaplin, M. F. (2006). Information exchange within intracellular water. In: Pollack, G., et al. Water and the Cell. Netherlands: Springer. pp. 113–123
  • Chemeris, N. K., Gapeyev, A. B., Sirota, N. P., et al. (2004). DNA damage in frog erythrocytes after in vitro exposure to a high peak-power pulsed electromagnetic field. Mutat. Res. 558:27–34
  • Danielian, A. A., Ayrapetyan, S. N. (1999). Changes of hydration of rats’ tissues after in vivo exposure to 0.2 Tesla steady magnetic field. Bioelectromagnetics 20:123–128
  • Devyatkov, N. D. (1973). Effect of a SHF (mm-band) radiation on biological objects. Uspekhi Fizicheskikh Nauk. 110:453–454 (in Russian)
  • Dipolo, R., Beauge, L. (2006). Na+/Ca2+ exchanger: Influence of metabolic regulation on ion carrier interaction. Physiol. Rev. 86:155–203
  • Foster, K. R. (2006). The mechanisms paradox. Ayrapetyan, S. N., Markov, M. S., eds. Biomagnetics. Dordrecht, The Netherlands, Springer. pp. 17–29
  • Gapeyev, A. B. (2011). The role of fatty acids in realization of anti-tumor effects of extremely high-frequency electromagnetic radiation. In: 21st International Crimean Conference on Microwave and Telecommunication Technology (CriMiCo) Crimea
  • Gapeyev, A. B., Lushnikov, K. V., Shumilina, Ju.V, et al. (2003). Effects of low intensity extremely high frequency electromagnetic radiation on chromatin structure of lymphoid cells in vivo and in vitro. Radiat. Biol. Radioecol. 43:87–92 (in Russian)
  • Gapeyev, A. B., Mikhailik, E. N., Chemeris, N. K. (2009). Features of anti-inflammatory effects of modulated extremely high-frequency electromagnetic radiation. Bioelectromagnetics 30:454–461
  • Gapeyev, A. B., Kulagina, T., Alexander, V. (2013). Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue. Int. J. Radiat. Biol. 89:602–610
  • Gharibova, L. S., Avetisian, T. H., Ayrapetyan, V. E., et al. (1996). Effect of PMF on Ca influx in excitable and unexcitable cells and proliferative activity of rat spleen cells. Radioecology N 5:718–721
  • Grigoryev, Y. (2012). Evidence for effects on the immune system supplement. Immune system and EMF RF. In: Sage, C, Carpenter, D. BioInitiative Working Group 8. Bioinitiative Report WHO 2012. World Health Organization: Switzerland. www.bioinitiative.org
  • Gromozova, E. N., Voychuk, S. I., Zelena, L. B., et al. (2011). Microorganisms as a model system for studying the biological effects of electromagnetic non-ionizing radiation. Safety Eng. UDC 613.648.2:681.586
  • Gudkova, O. Y., Gudkov, S. V., Gapeyev, A. B., et al. (2005). The study of the mechanisms of formation of reactive oxygen species in aqueous solutions on exposure to high peakpower pulsed electromagnetic radiation of extremely high frequencies. Biofizica 50:773–779 (in Russian)
  • Heqimyan, A., Narinyan, L., Nikoghosyan, A., et al. (2012). Age dependency of high affinity ouabain receptors and their magneto sensitivity. The Environmentalist 32:228–235
  • Hunanyan, S., Ayrapetyan, S. (2007). The dose-dependent effect of hydrogen peroxide on neuromembrane chemosensitivity. Electromagn. Biol. Med. 26:225–233
  • Ilyin, V., Batov, A., Usanova, N. (2010a). Impact of probiotic drugs, based on Enterobacter faecium autostrains, on human intestinal microflora in confined habitat. 38th COSPAR Scientific Assembly. 18–15 July 2010, in Bremen, Germany, p. 4. http://65.54.113.26/Publication/51722800
  • Ilyin, V., Solovieva, Z., Panina, J. (2010b). Operative control of human microflora in confined habitat. 38th COSPAR Scientific Assembly. 18–15 July 2010, in Bremen, Germany, p. 4 http://65.54.113.26/Publication/53501095
  • Juhaszova, M., Blaustein, M. (1982). Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells. Proc. Natl. Acad. Sci. 94:1800–1805
  • Kaczmarek, L. K. (2006). Non-conducting functions of ion channels. Nat. Rev. Neurosci. 7:761–771
  • Klassen, V. I. (1982). Magnetized Water Systems. Moscow: Chemistry Press. 296 p
  • Lednev, V. V. (1991). Possible mechanism for the influence of weak magnetic field interactions with biological systems. Bioelectromagnetics 18:455–461
  • Lucchesi, P. A., Sweadner, K. J. (1991). Postnatal changes in and skeletal muscle. J. Biol. Chem. 267:769–773
  • Markov, M. S. (2004). Myosin light chain phosphorylation modification depending on magnetic fields. Theor. Electomagnet. Biol. Med. 23:55–74
  • Markov, M. S. (2009). Biological Effects of Electromagnetic Fields. Dordrecht, the Netherlands: Springer (A special issue of The Environmentalist)
  • Markov, M. S., Todorov, S. I., Ratcheva, M. R. (1975). Biomagnetic effects of the constant magnetic field action on water and physiological activity. In: Jensen, K., Vassileva, Yu. Physical Bases of Biological Information Transfer. New York: Plenum Press. pp. 441–445
  • Martirosyan, V., Baghdasaryan, N., Ayrapetyan, S. (2013a). The study of the effects of mechanical vibration at infrasound frequency on [3H]-thymidine incorporation into DNA of E. coli K-12. Electromagn. Biol. Med. 32:40–47
  • Martirosyan, V., Baghdasaryan, N., Ayrapetyan, S. (2013b). Bidirectional frequency dependent effect of extremely low-frequency electromagnetic field on E. coli K-12. Electromagn. Biol. Med. 32:291–300
  • Movasaghi, Z., Rehman, S., Rehman, I. (2007). Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42:5,493–541
  • Narinyan, L., Ayrapetyan, G., Ayrapetyan, S. (2012). Age-dependent magneto-sensitivity of heart muscle hydration. Bioelectromagnetics 33:452–458
  • Narinyan, L., Ayrapetyan, G., Ayrapetyan, S. (2013). Age-dependent magnetosensitivity of heart muscle ouabain receptors. Bioelectromagnetics 34:312–322
  • Narinyan, L. Y., Ayrapetyan, G. S., Jaysankar, De, et al. (2014). Age-dependent increase in Ca exchange magnetosensitivity in rat heart muscles. Biochem. Biophys. 2:39–49
  • Nawrotek, P., Fijalkowski, K., Struk, M., et al. (2014). Effects of 50 Hz rotating magnetic field on the viability of Escherichia coli and Staphylococcus aureus. Electromagn. Biol. Med. 33:29–34
  • Orecchini, A., Sebastiani, F., Jasnin, M., et al. (2012a). Collective dynamics of intracellular water in living cells. J. Phys.: Conf. Ser. 340 012091
  • Orecchini, A., Paciaroni, A., Petrillo, C., et al. (2012b). Water dynamics as affected by interaction with biomolecules and change of thermodynamic state: A neutron scattering study. J. Phys. Condens. Matter 24:064105
  • Parsegian, V. A., Rand, R. P., Ran, D. C. (2000). Osmotic stress crowding, preferential hydration and binding. A comparison of perspectives. Proc. Natl. Acad. Sci. 97:3987–3992
  • Parton, R., Simons, K. (2007). The multiple faces of caveolae. Nature 8:185–194
  • Saghyan, A. A., Ayrapetyan, S. N., Carpenter, D. O. (1996). Low dose of ouabain stimulates the Na:Ca exchange in helix Pomatia neuros. Mol. Neurobiol. 16:180–185
  • Schwartz, A. (1989). Calcium antagonists: Review and perspective on mechanism of action. Am. J. Cardiol. 64:31–91
  • Segatore, B., Setacci, D., Bennato, F., et al. (2012). Evaluations of the effects of extremely low-frequency electromagnetic fields on growth and antibiotic susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int. J. Microbiol. 2012:587293
  • Stepanyan, R. S., Ayrapetyan, S. N. (1999). The effect of mechanical vibration on the water conductivity. Biophysics 44:197–202 (in Russian)
  • Szent-Gyorgyi, A. (1968). Bioelectronics: A Study in Cellular Regulations, Defense and Cancer. New York: Academic Press. pp. 54–56
  • Takeuchi, A., Tatsumi, S., Sarai, N., et al. (2006). Ionic mechanisms of cardiac cell swelling induced by blocking Na+/K+ pump as revealed by experiments and simulation. J. Gen. Physiol. 128:495–507
  • Thomas, R. C. (1972). Electrogenic sodium pump in nerve and muscle cells. Physiol. Rev. 52:563–594
  • Trushin, M. V. (2003). The possibility role of electromagnetic fields in bacterial communication. J. Microbiol. Immunol. Infect. 36:153–160
  • Wymore, T., Deerfield, D. W., Hempel, J. (2007). Mechanistic implications of the cysteine-nicotinamide adduct in aldehyde dehydrogenase based on quantum mechanical/molecular mechanical simulations. Biochemistry 46:9495–9506

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.