34
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Electromechanical Properties of Bone: A Review

&
Pages 219-238 | Published online: 07 Jul 2009

References

  • Fukada E., Yasuda I. On the piezoelectric effects in bone. J. Phys. Soc. Japan 1957; 12: 1158
  • Bassett C. A. L., Becker R. O. Generation of electric potentials in bone in response to mechanical stress. Science 1962; 137: 1063
  • Bassett C. A. L. Biological significance of piezoelectricity. Calc. Tiss. Res. 1968; 1: 252–272
  • Jonck L. M., Ericksson C. Some factors affecting bone formation. S. A. Med. J. 1975; 49: 1747
  • Gjelsvik A. Bone remodeling and piezoelectricity ‐I. J. Biomechanics 1973; 6: 69
  • Becker R. O., Bassett C. A. L., Bachmann C. H. Bio‐electrical factors controlling bone structure. Bone Bio‐dynamics, H. M. Frost. Little Brown & Co., Boston 1964; 209–231
  • Gjelsvik A. Bone remodeling and piezoelectricity ‐II. J. Biomechanics 1973; 6: 187
  • Bassett C. A. L., Pilla A. A., Pawluk R. J. A non‐operative salvage of surgically‐resistant pseudarthroses and non‐unions by pulsing electromagnetic fields: A preliminary report. Clin. Orthop. 1977; 124: 128
  • Brighton C. T. Current concept review ‐The treatment of non‐unions with electricity. JBJS 1981; 63‐A: 847–856
  • Bassett C. A. L., Caulo N., Kort J. Congenital “pseudarthroses” of the tibia, treatment with pulsing electromagnetic fields. Clin. Orthop. 1981; 154: 136
  • Bassett C. A. L., Mitchell S. N., Gaston S. R. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J. Bone Joint Surg. 1981; 63‐A: 511
  • Brighton C. T., Freidenberg Z. B., Mitchell E. I., Booth R. E. Treatment of non‐union with constant direct current. Clin. Orthop. 1977; 124: 106–123
  • Cochran G. V. B., Kabada M. P., Palmieri V. R. External ultrasound can generate microampere direct current in vivo from implanted piezoelectric materials. J. Orthop. Res. 1988; 6: 145–147
  • Bassett C. A. L., Valdes M. G., Hernandez O. Modification of fracture repair with selected pulsing electromagnetic fields. J. Bone Joint Surg. 1982; 64‐A: 888
  • Bassett C. A. L., Black J., Friedenberg Z. B., Esterhal J. L., Day L. J., Connolly J. F. Electrically induced osteogenesis ‐ Relationship of current density to quantity of bone formed. Clin. Orthop. 1981; 161: 122
  • Baranowski T. J., Black J., Brighton C. T., Friedenberg Z. B. Electrical osteogenesis by low‐direct current. J. Orthop. Res. 1983; 1: 120–128
  • Williams W. S. Piezoelectric effects in biological materials. Ferroelectrics 1982; 41: 225–241
  • Williams W. S., Breger L. Analysis of stress frequency distribution and piezoelectric response in cantilever bending of bone and tendon. Ann. N. Y. Acad. Sci. 1974; 238: 121–130
  • Zimmerman R. L. Piezoelectricity and biological materials. J. Bioelectricity 1982; 1: 265287
  • Guzelsu N., Demiray H. Electromechanical properties and related model for bone tissues. Int. J. Eng. Sci. 1979; 17: 813
  • Cochran G. V. B. Electromechanical Characteristics of Moist Bone. Dissertation, Columbia University. 1967
  • Reinish G. B., Nowick AS. Effect of moisture on electrical and piezoelectric properties of bone. J. Electrochem. Soc. 1976; 123: 1451
  • Singh S., Saha S. Frequency dependence of SGPs in wet compact bone. Trans. 10th Ann. Meeting of Biomaterials. 1983; 221
  • Shamos H. M., Lavine L. S. Physical bases for bioelectric effects in mineralized tissues. Clin. Orthop. 1964; 35: 177
  • Singh S., Katz J. L. Scientific basis of electrostimulation. J. Bioelectricity 1986; 5: 282–326
  • Reinish G. B. Dielectric and Piezoelectric Properties of Bone as a Function of Moisture Content. Dissertation, Columbia University. 1974
  • Williams W. S., Breger L. Piezoelectricity in tendon and bone. J. Biomechanics 1975; 8: 407–413
  • Schwan H. P. Determination of biological impedance. Physical Technique in Biological Research, W. L. Nastuk. Academic Press, New York 1963; 326
  • Bur A. J. Measurements of dynamic piezoelectric properties of bone as a function of temperature and humidity. J. Biomechanics 1976; 9: 495
  • Reddy G. N., Saha S. A differential method for measuring impedance properties of bone. J. Bioelectricity 1982; 1: 173–194
  • Marino A. A., Becker R. O. Origin of piezoelectricity effects in bone. Calc. Tiss. Res. 1971; 3: 177–180
  • Marino A. A., Becker R. O. Piezoelectricity in bone as a function of age. Calc. Tiss. Res. 1974; 14: 327–332
  • Anderson J., Ericksson C. Electrical properties of wet collagen. Nature 1968; 218: 166
  • Anderson J., Ericksson C. Piezoelectric properties of dry and wet bone. Nature 1970; 227: 491
  • Gross D., Williams W. S. Streaming potentials and the electromechanical response of physiologically moist bone. J. Biomechanics 1982; 15: 277
  • Pienkowski D. The Effects of Fluids on Stress Generated Potentials in Fluid Saturated Bone. Dissertation, University of Pennsylvania. 1982
  • Marino A. A., Becker R. O. Piezoelectricity in hydrated frozen bone and tendon. Nature 1975; 253: 627–628
  • Steinberg M. E., Finnegan W. J., Labooky D. A., Black J. Temperature and thermal effects and deformation potentials in bone. Calc. Tiss. Res. 1976; 21: 135–144
  • Chakkalakal D. A., Johnson M. W., Harper R. H., Katz J. L. Dielectric properties of fluid saturated bone. IEEE Trans. Biomed. Eng. 1980; BME‐27: 95
  • Saha S., Reddy G. N., Albright J. A. Factors affecting the measurements of bone impedance. Med. Biol. Eng. Comput. March, 1984; 123–129
  • Johnson M. W., Chakkalakal D. A., Harper R. A., Katz J. L. Comparison of the electromechanical effects in wet and dry bone. J. Biomechanics 1980; 13: 437
  • Maeda H., Tsuda K., Fukada E. The dependence of temperature and hydration of piezoelectric, dielectric and elastic constants of bone. Japan. J. Appl. Phys. 1976; 15: 2333–2336
  • Singh S., Saha S. Electric and dielectric properties of bone: A review. Clin. Orthop. 1984; 186: 249–271
  • Reddy G. N., Saha S. Electrical and dielectric properties of wet bone as a function of frequency. IEEE Trans. Biomed. Eng. 1984; 31: 296
  • Singh S. Electrical properties of whole bone. J. Bioelectricity 1987; 6: 169–180
  • Kosterich J. D., Foster K. R., Pollack S. R. Dielectric permittivity and electrical conductivity of fluid saturated bone. IEEE Trans. Biomed. Eng. 1983; 30: 81
  • Singh S., Saha S. Electrical characteristics of the electrode‐bone interface. Med. Biol. Eng. Comput. 1987; 25: 448–452
  • Cochran G. V. B., Pawluk R., Bassett C. A. L. Electromechanical characteristics of bone under physiological moist conditions. Clin. Orthop. 1968; 58: 249
  • Steinberg M. E., Borch A., Schwan A., Gliaxer R. Electrical potentials in stressed bone. Clin. Orthop. 1968; 61: 294–299
  • Steinberg M. E., Busenkell G. L., Wert R. E., Cohen L. D., Black J., Korostoff E. Piezoelectric properties of whole and sectioned bone. International Congress Series #291, Orthopaedic Surgery and Traumatology, 1972; 964–965
  • Steinberg M. E., Wert R. E., Korostoff E., Black J. Deformation potentials in whole bone. J. Surg. Res. 1973; 14: 254–259
  • Renkowski D., Pollack S. R. The origin of stress generated potentials in fluid saturated bone. J. Orthop. Res. 1983; 1: 30
  • Pfeiffer B. H. Local piezoelectric polarization of human cortical bone as a function of stress frequency. J. Biomechanics 1977; 10: 53–57
  • Singh S. Ultrasound generation and propagation in hard tissues. Dissertation, Jawaharlal Nehru University, India 1982
  • Starkebaum W., Pollack S. R., Korostoff E. Micro‐electrode studies of stress‐generated potentials in four‐point bending of bone. J. Biomed. Mat. Res. 1979; 13: 729–751
  • Black J., Korostoff E. Strain‐related potentials in living bone. Ann. N. Y. Acad. Sci. 1974; 238: 95
  • Iannacone W., Korostoff E., Pollack S. R. Micro‐electrode study of stress‐generated potentials obtained from uniform and nonuniform compression of human bone. J. Biomed. Mat. Res. 1979; 13: 753
  • Steinberg M. E., Busenkell G. L., Black J., Korostoff E. Stress‐induced potentials in moist bone in vitro. J. Bone Joint Surg. 1974; 56‐A: 704–713
  • Bassett C. A. L., Pawluk R. J. Electrical behavior of cartilage during bending. Science 1972; 178: 982–983
  • Schwan H. P. Alternating current polarization. Biophysik 1966; 3: 181
  • Schwan H. P. Electrode polarization impedance measurements in biological materials. Ann. N. Y. Acad. Sci. 1968; 148: 191
  • Martin R. B., Holt D. H., Advani S. Anomalous piezoelectric behavior in dry bone. Electrical Properties of Bone and Cartilage, C. T. Brighton, J. Black, S. R. Pollack. Grune and Stratton, New York 1979; 31–45
  • Holt D. J., Martin R. B., Advani S. Experimental investigation of bone as piezoelectric cantilever beam. Proc. 4th New England Bio‐engineering, S. Saha. Pergamon Press, New York 1976; 33
  • Reinish G. B., Nowick AS. A model for dielectric behavior of wet bone. Electrical Properties of Bone and Cartilage, C. T. Brighton, J. Black, S. R. Pollack. Grune and Stratton, New York 1979; 13
  • Bur A. J. Piezoelectric measurements on bone as a function of temperature and humidity. J. Biomechanics 1975; 9: 483
  • Black J. Strain‐related Potentials in Viable Human Cortical Bone. Dissertation, University of Pennsylvania, Philadelphia 1972
  • Lavine L. S., Lustrin I., Shamos M., Rinaldi R., Liboff A. Electric enhancement of bone healing. Science 1972; 175: 1118
  • Singh S., Behari J. Physical characterization of bone materials. J. Biol. Phys. 1984; 8: 1–8
  • Shamos H. M., Lavine L. S., Shamos M. I. Piezoelectric effects in bone. Nature 1963; 197: 81
  • Martin R. B., Gutman W. The effect of electric fields on osteoporosis of disuse. Calc. Tiss. Res. 1978; 25: 23
  • Behari J., Singh S. Bioelectric characteristics of unstressed in vivo bone;. Med. Biol. Eng. Comput. 1981; 19: 49–54
  • Marino A. A., Becker R. O. Piezoelectric effects and growth control in bone. Nature 1970; 228: 473
  • Dainora J. Piezoelectric Properties of Bone. M. S. Thesis, West Virginia University, Morgantown 1964
  • McElhaney J. H. Dynamic response of bone and muscle tissue. J. Appl. Physiol. 1966; 21: 1231
  • Steinberg M. E. Effect of collagen modification of stress generated potentials (SGPs). Electrical Properties of Bone and Cartilage: Experimental Effects and Clinical Applications, C. T. Brighton, J. Black, S. R. Pollack. Grune & Stratton, New York 1979; 83–93
  • Johnson M. W., Williams W. S., Gross D. Ceramic model for piezoelectricity in dry bone. J. Biomechanics 1980; 13: 565
  • Fukada E., Veda H. Temperature dependence of the piezoelectric constants of hydrated bone and collagen. Electrical Properties of Bone Cartilage: Experimental Effects and Clinical Applications, C. T. Brighton, J. Black, S. R. Pollack, 1979
  • Maeda H., Fukada E. Effect of water on piezoelectric, dielectric and elastic properties of bone. Biopolymers 1982; 21: 2655
  • Ericksson C. Streaming potentials and other water dependent effects on mineralized tissues. Ann. N. Y. Acad. Sci. 1974; 238: 321
  • Singh S., Ranu H. S. Characterization of bone materials as ultrasonic transducer. Biomaterials 1986; 7: 432–437
  • Yoon H. S., Katz J. L. Ultrasonic wave propagation in human cortical bone. III: Piezoelectric contribution. J. Bio‐mechanics 1986; 9: 537–540
  • Lakes R. S., Katz J. L. Viscoelastic properties of bone. Natural and Living Biomaterials, G. W. Hastings, C. Chem, P. Ducheyne. CRC Press, Inc., Boca Raton, Florida 1984
  • Hastings G. W. Structure and mechanical consideration in the strain‐related electric behavior of bone. Natural and Living Biomaterials, G. W. Hastings, C. Chem, P. Duchejme. CRC Press, Inc., Boca Raton, Florida 1984
  • Lakes R. S. The role of gradient effects in the piezoelectricity of bone. IEEE Trans. Biomed. Eng. 1980; BME‐27: 282–283
  • Katz J. L., Yoon H. S. The structure and anisotropic mechanical properties of bone. IEEE Trans. Biomed. Eng. 1984; 31: 878
  • Thomas G., Zimmerman R. L. Effect of water on piezoelectricity in bone and collagen. Biophysical J. 1975; 15: 573–576
  • Behari J., Singh S. Ultrasound propagation in in vivo bane. Ultrasonic 1981; 19: 87–90
  • Jowsey J. Age changes in human bone. Clin. Orthop. 1960; 17: 210
  • Jowsey J. Variation of bone mineralization with age and disease. Bone Biodynamics, H. M. Frost. Little Brown and Co., Boston 1964; 461–479
  • Jowsey J. Bone density and measurements. Metabolic Diseases of Bone. W. B. Saunders Co., Philadelphia 1977; 96–114, Chapter 13
  • Atkinson P. J., Weatherell J. A., Weidmann S. M. Changes in density of the human femoral cortex with age. J. Bone Joint Surg. 1962; 44‐B: 496–502
  • Arnold J. S., Bartley M. H., Tront S. A., Tenkins D. P. Skeletal changes in aging and disuse. Clin. Orthop. 1966; 47: 17
  • Chatterji S., Wall J. C., Jaffrey J. W. Age‐related changes in the orientation and particle size of the mineral phase in human femoral cortical bone. Calc. Tiss. Int. 1981; 33: 567
  • Eanes E. Biological Mineralization, I. Zipkin. John Wiley, New York 1972; 227
  • Enlow D. H. Principle of Bone Remodeling. Charles C. Thomas, Springfield, IL 1963
  • Frost H. M. Bone Biodynamics. Little Brown and Co., Boston 1964
  • Frost H. M. Bone Remodeling and its Relationship to Metabolic Diseases. Charles C. Thomas, Springfield, IL 1973
  • Mauch P., Botnik L. E., Hannon C. E., Obbagy J., Hellman S. Decline in bone marrow proliferative capacity as a function of age. Blood 1982; 60: 245–251
  • Meema H. E. Cortical bone atrophy and osteoporosis as a magnification of aging. Am. J. Roentgenol. 1963; 89: 1287–1295
  • Nordin B. E. C. The' application of basic sciences to osteoporosis. Bone Biodynamics, H. M. Frost. Little Brown and Co., Boston 1964; 521–542
  • Ortener D. J. Aging effects on osteon remodeling. Calc. Tiss. Res. 1975; 18: 27
  • Paterson D. C. Metabolic Disorder of Bone. Blackwell Scientific Publications, Philadelphia 1974
  • Leichter I., Weiberb A., Hazen G., Loewinger E., Robin G. C., Steinberg R., Menczed J., Makin M. The effect of age and sex on bone density, bone mineral content and cortical index. Clin. Orthop. 1981; 156: 232–239
  • Little K. Bone Behavior. Academic Press, London 1973
  • Louis V. A. Osteoporosis. The Osteoporotic Syndrome, L. V. Avioli. Grune & Stratton, New York 1983; 280–318
  • Smith R. Biochemical Disorder of the Skeleton. Butterworth, London 1979
  • Bourne G. H. The Biochemistry and Physiology of Bone. Academic Press, New York 1971
  • Swanson G. T., Lafferty J. F. Electrical properties of bone as a function of age, immobilization, and vibration. J. Biomechanics 1972; 5: 261
  • Urist M. I. Fundamental and Clinical Bone Physiology. J. B. Lippincott Co., Philadelphia 1980
  • Kay M. I., Young R. A. Crystal structure of hydroxy‐apatite. Nature 1964; 204: 105
  • Kenner S. M., Gabrielson E. W., Lovell J. E., Marshall A. E. Electrical modification of disuse osteoporosis. Calc. Tiss. Res. 1975; 18: 111
  • Alexander R. T. Strain‐related Potentials in Human and Bovine Bone. Dissertation, University of Pennsylvania. 1976
  • Becker R. O., Bassett C. A. L., Bachman C. H. The Bioelectric control system regulating bone growth. Bone Biodynamics, C. H.M. Frost. Little Brown and Co., Boston 1964; 209–231
  • Lang S. B. Thermal expansion coefficients and the primary and secondary pyroelectric coefficients of animal bone. Nature 1964; 224: 789
  • Cady P. G. Piezoelectricity. McGraw‐Hill Book Co., Inc., New York 1946
  • Zaffe B., Cook W., Zaffe H. IRE standard on piezoelectric crystals: Measurements of piezoelectric ceramics. Piezoelectric Ceramics. Academic Press, London 1971; 281–300
  • Mason W. P. Physical Acoustics. Academic Press, New York 1982
  • ElMessiery W. A., Hastings G. W., Rakowski S. Ferro‐electricity of dry cortical bone. J. Biomed. Eng. 1979; 1: 63
  • Mascarenhas S. The electret effects in bone and biopolymers and bound water problems. Ann. N. Y. Acad. Sci. 1974; 238: 36
  • Andrabi W. H., Behari J. Formation of bone electrets and their charge decay characteristics. Biomaterials 1981; 2: 120–123

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.