4
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Urinary 6-Sulphatoxymelatonin Excretion of Rats is not Changed by 24 Hours of Exposure to A Horizontal 50-HZ, 100-μT Magnetic Field

, &
Pages 23-31 | Published online: 07 Jul 2009

References

  • Feychting M., Schulgen G., Olsen J. H., Ahlbom A. Magnetic fields and childhood cancer—a pooled analysis of two Scandinavian studies. Eur. J. Cancer 1995; 31A: 2035–2039
  • Wertheimer N., Leeper E. Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 1979; 109: 273–284
  • Stevens R. G., Davis S. The melatonin hypothesis: electric power and breast cancer. Environ. Health. Perspect. 1996; 104(suppl. 1)135–140
  • Gurney J. G., Mueller B. A., Davis S., Schwartz S. M., Stevens R. G., Lopecky K. J. Childhood brain tumor occurrence in relation to residential power line configurations, electric heating sources, and electric appliance use. Am. J. Epidemiol. 1996; 143: 120–128
  • Mevissen M., Lerchl A., Löscher W. Study on pineal function and DMBA-induced breast cancer formation in rats during exposure to a 100-mG, 50 Hz magnetic field. J. Toxicol. Environ. Health 1996; 48: 169–185
  • Mevissen M., Lerchl A., Szamel M., Löscher W. Exposure of DMBA-treated female rats in a 50 Hz, 50μTesla magnetic field: effects on mammary tumor growth, melatonin levels, and T lymphocyte activation. Carcinogenesis 1996; 17: 903–910
  • Reiter R. J. Melatonin: that ubiquitously acting pineal hormone. News Physiol. Sci. 1991; 6: 223–227
  • Deacon S., Arendt J. Adapting to phase shifts, I. An experimental model for jet lag and shift work. Physiol. Behav. 1996; 59: 665–673
  • Deacon S., Arendt J. Adapting to phase shifts, II. Effects of melatonin and conflicting light treatment. Physiol. Behav. 1996; 59: 675–682
  • Skene D. J., Deacon S., Arendt J. Use of melatonin in circadian rhythm disorders and following phase shifts. Acta Neurobiol. Exp. 1996; 56: 359–362
  • Bergiannaki J. D., Paparrigopoulos T. J., Stefanis C. N. Seasonal pattern of melatonin excretion in humans: relationship to daylength variation rate and geomagnetic field fluctuations. Experientia 1996; 52: 253–258
  • Schulz P., Chardo F., Degli Agosti R., Schaad N., Rivest R. W. Parallel nocturnal secretion of melatonin and testosterone in the plasma of normal man. J. Pineal Res. 1995; 19: 16–22
  • Touitou Y., Févre M., Lagoguey M., Carayon A., Bogdan A., Reinberg A., Beck H., Cesselin F., Touitou C. Age- and mental health-related circadian rhythms of plasma levels of melatonin, prolactin, luteinizing hormone and follicle-stimulating hormone in man. J. Endocrinol. 1981; 91: 467–475
  • Skwarlo-Sonta K. Functional connection between the pineal gland and immune system. Acta Neurobiol. Exp. 1996; 56: 341–357
  • Conti A., Maestroni G. J.M. The clinical neuroimmunotherapeutic role of melatonin in oncology. J. Pineal Res. 1995; 19: 103–110
  • Maestroni G. J.M. Melatonin as a therapeutic agent in experimental endotoxic shock. J. Pineal Res. 1996; 20: 84–89
  • Brackowski R., Zubelewicz B., Romanowski W., Lissoni P., Barni S., Tancini G., Maestroni G. J.M. Preliminary study on modulation of the biological effects of tumor necrsosi factor-alpha in advanced cancer patients by the pineal hormone melatonin. J. Biol. Regul. Homeost. Agents 1994; 8: 77–80
  • Massion A. O., Teas J., Herbert J. R., Wertheimer M. D., Kabat-Zinn J. Meditation, melatonin and breast/prostate cancer: hypothesis and preliminary data. Med. Hypotheses 1995; 44: 39–46
  • Reiter R. J. Oxygen radical detoxification processes during aging: the functional importance of melatonin. Aging Clin. Exp. Res. 1995; 7: 340–351
  • Sewerynek E., Ortiz G. G., Reiter R. J., Pablos M. I., Melchiom D., Daniels W. M.U. Lipopolysaccharide-induced DNA damage is greatly reduced in rats treated with the pineal hormone melatonin. Mol. Cell. Endocrinol. 1996; 117: 183–188
  • Hätönen T., Alila A., Laakso M-L. Exogenous melatonin fails to counteract the light-induced phase delay of human melatonin rhythm. Brain Res. 1996; 710: 125–130
  • Laakso M-L., Hätönen T., Alila A. Uncoupling of the pineal melatonin synthesis of rats from the circadian regulation. Neurosci. Lett. 1994; 179: 543
  • Selmaoui B., Touitou Y. Sinusoidal 50-Hz magnetic fields depress rat pineal NAT activity and serum melatonin, role of duration and intensity of exposure. Life Sci. 1995; 57: 1351–1358
  • Kato M., Honma K., Shigemitsu T., Shiga Y. Circularly polarized 50-Hz magnetic fields exposure reduces pineal gland and blood melatonin concentration of Long-Evans rats. Neurosci. Lett. 1994; 166: 59–62
  • Duchene A. S., Lakey J. R., Repachoili M. H. IRPA/INIRC Guidelines on Protection Against Non-ionizing Radiation. Pergamon Press, Elmsford, NY 1991
  • Bakos J., Nagy N., Thuróczy G., Szabó L. D. Sinusoidal 50 Hz, 500μT magnetic field has no acute effect on urinary 6-sulphatoxymelatonin in Wistar rats. Bioelectromagnetics 1995; 16: 377–380
  • Selmaoui B., Lambrozo J., Touitou Y. Magnetic fields and pineal function in humans: evaluation of nocturnal acute exposure to extremely low frequency magnetic fields on serum melatonin and urinary 6-sulfatoxymelatonin circadian rhythms. Life Sci. 1996; 58: 1539–1549
  • Stieglitz A., Speigelhalter F., Klante G., Heldmayer G. Urinary 6-sulphatoxy melatonin excretion reflects pineal melatonin secretion in the Djungarian hamster (Phodopus sungoas). J. Pineal Res. 1995; 18: 69–76
  • Pohjanvirta R., Laitinen J., Vakkuri O., Linden J., Kokkola T., Unkila M., Tuomisto J. Mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reduces circulating melatonin levels in the rat. Toxicology 1996; 107: 85–97
  • Vakkuri O., Leppäluoto J., Vuolteenaho O. Development and validation of a melatonin radioimmunoassay using radioiodinated melatonin as tracer. Acta Endocrinol. 1984; 106: 152–157
  • Aldhous M. E., Arendt J. Radioimmunoassay for 6-sulphatoxymelatonin in urine using an iodinated tracer. Ann. Clin. Biochem. 1988; 25: 298–303
  • Bartsch H., Bartsch C., Mecke D., Lippert T. H. Seasonality of pineal melatonin production in the rat: possible synchronization by the geomagnetic field. Chronobiol. Int. 1994; 11: 21–26
  • Kato M., Honma K., Shigemitsu T., Shiga Y. Horizontal or vertical 50 Hz, 1-μT magnetic fields have no effect on pineal gland or plasma melatonin concentration of albino rats. Neurosci. Lett. 1994; 168: 205–208
  • Bakos J., Nagy N., Thuróczy G., Szabó L. D. Urinary 6-sulphatoxymelatonin excretion is increased in rats after 24 hours of exposure to vertical 50 Hz, 100 μT magnetic field. Bioelectromagnetics 1997; 18: 190–192
  • Yellon S. M. 60-Hz magnetic field exposure effects on the melatonin rhythm and photoperiod control of reproduction. Am. J. Physiol. 1996; 270: E816–E821

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.