117
Views
0
CrossRef citations to date
0
Altmetric
Original Article

The Apical Lamina and its Role in Cell Adhesion in Sea Urchin Embryos

, &
Pages 97-108 | Received 26 Sep 1996, Published online: 11 Jul 2009

References

  • Adelson D. L., Humphries T. Sea urchin morphogenesis and cellhyalin adhesion are perturbed by a monoclonal antibody specific for hyalin. Development 1988; 104: 391–402
  • Alliegro M. C., Ettenson C. A, Burdsal C. A, Erickson H. P., McClay D. R. Echinonectin: a new embryonic substrate adhesion protein. J. Cell Biol. 1988; 107: 2319–2327
  • Bisgrove B. W., Raff R. A. The SpEGF III Gene Encodes a Member of the Fibropellins-EGF Repeat-Containing Proteins That Form the Apical Lamina of the Sea Urchin Embryo. Dev. Biol. 1993; 157: 526–538
  • Bisgrove B. W., Andrews M. E., Raff R. A. Fihropellins, products of an EGF repeat-containing gene, form a unique extracellular matrix structure that surrounds the sea urchin embryo. Dev. Biol. 1991; 146: 89–99
  • Blum H., Beier H., Gross J. Improved staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophor. 1987; 8: 93–99
  • Brennan C., Robinson J. J. Cloning and Characterization of HLC-32, a 32-kDa protein component of the sea urchin extraembyronic matrix, the hyaline layer. Dev. Biol. 1994; 165: 556–565
  • Brown W. B., Hollander M. “Statistics, a biomedical introduction”. John Wiley and Sons, Toronto 1977
  • Burke R. D., Myers R. L., Sexton T. L., Jackson C. Cell movements during the initial phase of gastrulation in the sea urchin embryo. Dev. Bid. 1991; 146: 542–557
  • Burnette W. N. Western Blotting:electorphoretic transfer of protein from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 1981; 112: 195–203
  • Campbell S. S., Crawford B. J. Ultrastructural Study of the Hyaline layer of the starfish embryo, Pisaster ochraceus. Anat. Rec. 1991; 231: 125–135
  • Fink R. D., McClay D. R. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev. Biol. 1985; 107: 6674
  • Fuhrman M. H., Suhan J. P., Ettensohn C. A. Developmental Expression of Echinonectin, an Endogenous Lectin of the Sea Urchin Embryo. Dev. Growth Differ. 1992; 34: 137–150
  • Gray J., Justice R., Nagel G. M., Carroll E. J. Resolution and characterization of a major protein of the sea urchin hyaline layer. J. Biol. Chem. 1986; 261: 9282–9288
  • Grinnell E. F. Cellular adhesiveness and extracellular substrata. Int. Rev. Cytol. 1978; 53: 65–144
  • Gustafson T., Wolpert L. Cellular movement and contact in sea urchin morphogenesis. Biol. Rev. 1967; 42: 442–498
  • Hall H. G., Vacquier V. D. The apical lamina of the sea urchin embryo: major glycoprotein associated with the hyaline layer. Dev. Biol. 1982; 89: 168–178
  • Herbst C. Uber das Auseinandergehen BAn Furchungs-und Gewebezellen in Kalkfreim Medium. Wilhelm Roux's Arch. Entwicklungsmech. Org. 1900; 9: 424–463
  • Hursh D. A., Andrews M. E., Raff R. A. A sea urchin gene encodes a polypeptide homologous to epidermal growth factor. Science 1987; 237: 1487–1490
  • Hylander B. L., Summers R. G. An ultrastructural immunocytochemical localization of hyalin in the sea urchin egg. Dev. Biol. 1982; 93: 368–380
  • Kane R. E. Hyalin release during normal sea urchin development and its replacement after removal at fertilization. Exp. Cell Res. 1973; 81: 301–311
  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685
  • Lundgren B. Surface coatings of the sea urchin larva as revealed by ruthenium red. J. Submicrosc. Cytol. 1973; 5
  • Matranga V., Diferro D., Zito F., Cervello M., Nakano E. A New Extracellular Matrix Protein of the Sea Urchin Embryo with Properties of a Substrate Adhesion Molecule. Rouxs Archives of Developmental Biology 1992; 201: 173–178
  • McCarthy R. A., Spiegel M. Protein composition of the hyaline layer of sea urchin embryos and reaggregating cells. Cell Differ 1983; 13: 93–102
  • McClay D. R., Fink R. D. Sea urchin hyalin: appearance and function in development. Dev. Biol. 1982; 92: 285–293
  • Nakajima Y., Burke R.D. The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells. Dev. Biol 1996
  • Robinson J. J. Protein-Protein interactions and structural entities within the sea urchin extracellular matrix, the hyaline layer. Arch. Bioch. Biophys. 1991; 291: 126–131
  • Robinson J. J., Brennan C. Assembly of the sea urchin extraembronic hylaine layer: Ca2+and Mg2+ act independently and at different sies on the pathway leading to hyalin gel formation. Arch. Bioch. Biophys. 1991; 285: 285–290
  • Spiegel E., Howard L., Spiegel M. Extracellular matrix of sea urchin and other marine invertebrate embryos. J. Morphol. 1989; 199: 71–92
  • St. John J.J., Schroen D.J., Cheung H.T. An adhesion assay using minimal shear force to remove non-adherent cells. J. Immunol. Meth. 1994; 170: 159–166
  • Wolpert L., Mercer E. H. An electron microscope study of the development of the blastula of the sea urchin embryo and its radial polarity. Exp. Cell Res. 1963; 30: 280–300

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.