983
Views
74
CrossRef citations to date
0
Altmetric
Reviews

Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning?

Pages 859-869 | Received 13 Aug 2009, Accepted 17 Sep 2009, Published online: 23 Oct 2009

References

  • Bronstein AC, Spyker DA, Cantilena LRJr, Green JL, Rumack BH, Heard SE. 2008 annual report of the American Association of Poison Control Centers’ National Poison Data System (NDPS). Clin Toxicol 2008; 46:927–1057.
  • Jacobsen D, McMartin KE. Methanol and ethylene glycol poisoning. Mechanism of toxicity, clinical course, diagnosis and treatment. Med Toxicol 1986; 1:309–334.
  • Brent J, McMartin KE, Phillips S, Burkhart KK, Donovan JW, Wells M, Kulig K. Fomepizole for the treatment of ethylene glycol poisoning. N Engl J Med 1999; 340:832–838.
  • Jacobsen D, Ovrebo S, Ostborg J, Sejersted OM. Glycolate causes the acidosis in ethylene glycol poisoning and is effectively removed by hemodialysis. Acta Med Scand 1984; 216:409–416.
  • Jacobsen D, Hewlett TP, Webb R, Brown S, Ordinario AT, McMartin KE. Ethylene glycol intoxication: Evaluation of kinetics and crystalluria. Am J Med 1988; 84:145–182.
  • Cruzan C, Corley RA, Hard GC, Mertens JJWM, McMartin KE, Snellings WM, Gingell R, Deyo JA. Subchronic toxicity of ethylene glycol in Wistar and F344 rats related to metabolism and clearance of metabolites. Toxicol Sci 2004; 81:502–511.
  • Corley RA, Wilson DM, Hard GC, Stebbins KE, Bartels MJ, Soelberg JJ, Dryzga MD, Gingell R, McMartin KE, Snellings WM. Dosimetry considerations in the enhanced sensitivity of male wistar rats to chronic ethylene glycol-induced nephrotoxicity. Toxicol Appl Pharmacol 2008; 228:165–178.
  • Li Y, McMartin KE. Strain differences in urinary factors that promote calcium oxalate crystal formation in the kidneys of ethylene glycol-treated rats. Am J Physiol Renal Physiol 2009; 296:F1080–F1087.
  • Smith BJ, Anderson BG, Smith SA, Chew DJ. Early effects of ethylene glycol on the ultrastructure of the renal cortex in dogs. Am J Vet Res 1990; 51:89–96.
  • Pomara C, Fiore C, D'Errico S, Riezzo I, Fineschi V. Calcium oxalate crystals in acute ethylene glycol poisoning: a confocal laser scanning microscope study in a fatal case. Clin Toxicol 2008; 46:322–324.
  • Asselman M, Verhulst A, De Broe ME, Verkoelen CF. Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol 2003; 14:3155–3166.
  • Khan SR, Johnson JM, Peck AB, Cornelius JG, Glenton PA. Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol 2002; 168:1173–1181.
  • Green ML, Hatch M, Freel RW. Ethylene glycol induces hyperoxaluria without metabolite acidosis in rats. Am J Physiol Renal Physiol 2005; 289:F536–F543.
  • Konta T, Yamaoka M, Tanida H, Matsunaga T, Tomoike H. Acute renal failure due to oxalate ingestion. Intern Med 1998; 37:762–765.
  • Hoppe B, Beck BB, Milliner D. The primary hyperoxalurias. Kidney Int 2009; 75:1264–1271.
  • Miller C, Kennington L, Cooney R, Kohjimoto Y, Cao LC, Honeyman T, Pullman J, Jonassen J, Scheid C. Oxalate toxicity in renal epithelial cells: characteristics of apoptosis and necrosis. Toxicol Appl Pharmacol 2000; 162:132–141.
  • Thamilselvan S, Khan SR. Oxalate and calcium oxalate crystals are injurious to renal epithelial cells: results of in vivo and in vitro studies. J Nephrol 1998; 11(S–1):66–69.
  • Bhandari A, Koul S, Sekhon A, Pramanik SK, Chaturvedi LS, Huang M, Menon M, Koul HK. Effects of oxalate on HK-2 cells, a line of proximal tubular epithelial cells from normal human kidney. J Urol 2002; 168:253–259.
  • Hackett RL, Shevock PN, Khan SR. Alteration in MDCK and LLC-PK1 cells exposed to oxalate and calcium oxalate monohydrate crystals. Scanning Microsc 1995; 9:587–596.
  • Scheid CR, Koul HK, Kennington L, Hill WA. Oxalate-induced damage to renal tubular cells. Scanning Microsc 1995; 9:1097–1107.
  • Schepers MSJ, Van Ballegooijen ES, Bangma CH, Verkoelen CF. Oxalate is toxic to renal tubule cells only at supraphysiologic concentrations. Kidney Int 2005; 68:1660–1669.
  • Khan SR, Byer KJ, Thamilvan S, Hackett RL, McCormack WT, Benson NA, Vaughn KL, Erdos GW. Crystal-cell interaction and apoptosis in oxalate-associated injury of renal epithelial cells. J Am Soc Nephrol 1999; 10:S457–S463.
  • Maroni PD, Koul S, Chandhoke PS, Meacham RB, Koul HK. Oxalate toxicity in culture mouse inner medullary collecting duct cells. J Urol 2005; 174:757–760.
  • Guo C, Cenac TA, Li Y, McMartin KE. Calcium oxalate, and not other metabolites, is responsible for the renal toxicity of ethylene glycol. Toxicol Lett 2007; 173:8–16.
  • Guo C, McMartin KE. The cytotoxicity of oxalate, metabolite of ethylene glycol, is due to calcium oxalate monohydrate formation. Toxicology 2005; 208:347–355.
  • Poldelski V, Johnson A, Wright S, Rosa VD, Zager RA. Ethylene glycol-mediated tubular injury: identification of critical metabolites and injury pathways. Am J Kidney Dis 2001; 38:339–348.
  • Putnam KP, Bombick DW, Doolittle DJ. Evaluation of eight in vitro assays for assessing the cytotoxicity of cigarette smoke condensate. Toxicol In Vitro 2002; 16:599–607.
  • Chou JY, Richardson KE. The effect of pyrazole on ethylene glycol toxicity and metabolism in the rat. Toxicol Appl Pharmacol 1978; 43:33–44.
  • Clay KL, Murphy RC. On the metabolic acidosis of ethylene glycol intoxication. Toxicol Appl Pharmacol 1977; 39:39–49.
  • Garibotto G, Paoletti E, Acquarone N. Glyoxylic acid in ethylene glycol poisoning. Nephron 1988; 48:248–249.
  • Lieske JC, Swift H, Martin T, Patterson B, Toback FG. Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci 1994; 91:6987–6991.
  • Parry MF, Wallach R. Ethylene glycol poisoning. Am J Med 1974; 57:143–150.
  • Bachmann E, Golberg L. Reappraisal of the toxicology of ethylene glycol. III. Mitochondrial effects. Food Cosmet Toxicol 1971; 9:39–55.
  • McMartin KE, Wallace KB. Calcium oxalate monohydrate, a metabolite of ethylene glycol, is toxic for rat renal mitochondrial function. Toxicol Sci 2005; 84:195–200.
  • Marshall TC. Dose-dependent disposition of ethylene glycol in the rat after intravenous administration. J Toxicol Environ Health 1982; 10:397–409.
  • McChesney EW, Golberg L, Parekh CK, Russell JC, Min BH. Reappraisal of the toxicity of ethylene glycol. II. Metabolism studies in laboratory animals. Food Cosmet Toxicol 1971; 9:21–38.
  • Schepers MSJ, Van Ballegooijen ES, Bangma CH, Verkoelen CF. Crystals cause acute necrotic death in renal proximal tubule cells, but not in collecting tubule cells. Kidney Int 2005; 68:1543–1553.
  • Belliveau J, Griffin H. The solubility of calcium oxalate in tissue culture media. Anal Biochem 2001; 291:69–73.
  • Liu H, Miller E, Van der Water B, Stevens JL. Endoplasmic reticulum stress proteins block oxidant-induced Ca2+ increases and cell death. J Biol Chem 1998; 273:12858–12862.
  • Burgess J, Drasdo DN. Solubilities of calcium salts of dicarboxylic acids in methanol-water mixtures; transfer chemical potentials of dicarboxylate anions. Polyhedron 1993; 12:2905–2911.
  • Ebisuno S, Koul H, Menon M, Scheid C. Oxalate transport in a line of porcine renal epithelial cells - LLC-PK1 cells. J Urol 1994; 152:237–242.
  • Verkoelen CF, Romijn JC. Oxalate transport and calcium oxalate renal stone disease. Urol Res 1996; 24:183–191.
  • Koul H, Ebisuno S, Renzulli L, Yanagawa M, Menon M, Scheid C. Polarized distribution of oxalate transport systems in LLC-PK1 cells, a line of renal epithelial cells. Am J Physiol 1994; 266:F266–F274.
  • Hatch M, Freel RW, Vaziri ND. Intestinal excretion of oxalate in chronic renal failure. J Am Soc Nephrol 1994; 5:1339–1343.
  • Froberg K, Dorion RP, McMartin KE. The role of calcium oxalate crystal deposition in cerebral vessels during ethylene glycol poisoning. Clin Toxicol 2006; 44:315–318.
  • Finlayson B, Reid S. The expectation of free and fixed particles in urinary stone disease. Invest Urol 1978; 15:442–448.
  • Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P, Schroder FH, Romijn JC. Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int 1999; 55:1426–1433.
  • Schepers MSJ, Duim RAJ, Asselman M, Romijn JC, Schroder FH, Verkoelen CF. Internalization of calcium oxalate crystals by renal tubular cells: a nephron segment-specific process?. Kidney Int 2003; 64:493–500.
  • Hovda KE, Guo G, Austin R, McMartin KE. Renal toxicity of ethylene glycol results from internalization of calcium oxalate crystals by proximal tubule cells. Submitted for publication 2009; .
  • Lieske JC, Deganello S, Toback FG. Cell-crystal interaction and kidney stone formation. Nephron 1999; 81(suppl 1):8–17.
  • Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS. Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells. Am J Physiol 1997; 272:F55–F62.
  • Meimaridou E, Jacobson J, Seddon AM, Noronha-Dutra AA, Robertson WG, Hothersall JS. Crystal and microparticle effects on MDCK cell superoxide production: oxalate-specific mitochondrial membrane potential changes. Free Radic Biol Med 2005; 38:1553–1564.
  • Khan SR. Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 1995; 23:71–79.
  • Verkoelen CF, Van der Boom BG, Romijn JC. Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferation MDCK cells. Kidney Int 2000; 58:1045–1054.
  • Lieske JC, Toback FG. Regulation of renal epithelial cell endocytosis of calcium oxalate monohydrate crystals. Am J Physiol 1993; 264:F800–F807.
  • Khan SR, Kok DJ. Modulators of urinary stone formation. Front Biosci 2004; 9:1450–1482.
  • Marengo SR, Chen DH-C, Kaung H-LC, Resnick MI, Yang L. Decreased renal expression of the putative calcium oxalate inhibitor Tamm-Horsfall protein in the ethylene glycol rat model of calcium oxalate urolithiasis. J Urol 2002; 167:2192–2197.
  • Lieske JC, Norris R, Swift H, Toback FG. Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Kidney Int 1997; 52:1291–1301.
  • Vervaet BA, Verhulst A, Dauwe SE, De Broe ME, D'Haese PC. An active renal crystal clearance mechanism in rat and man. Kidney Int 2009; 75:41–51.
  • De Water R, Noordermeer C, van der Kwast TH, Nizze H, Boeve ER, Kok DJ, Schroder FH. Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 1999; 33:761–771.
  • Lieske JC, Spargo BH, Toback FG. Endocytosis of calcium oxalate crystals and proliferation of renal tubular epithelial cells in a patient with type I primary hyperoxaluria. J Urol 1992; 148:1517–1519.
  • Li Y, McMartin KE. Involvement of urinary proteins in the rat strain difference in sensitivity to ethylene glycol-induced renal toxicity. Submitted for publication 2009; .
  • Cao LC, Honeyman T, Jonassen J, Scheid CR. Oxalate-induced ceramide accumulation in Madin-Darby canine kidney and LLC-PK1 cells. Kidney Int 2000; 57:2403–2411.
  • Kohjimoto Y, Kennington L, Scheid CR, Honeyman TW. Role of phospholipase A2 in the cytotoxic effects of oxalate in cultured renal epithelial cells. Kidney Int 1999; 56:1432–1441.
  • Grunewald JM, Grunewald RW, Kinne RKH. Ion content and cell volume in isolated collecting duct cells: effect of hypotonicity. Kidney Int 1993; 44:509–517.
  • Cao LC, Jonassen J, Honeyman TW, Scheid C. Oxalate-induced redistribution of phosphatidylserine in renal epithelial cells. Implications for kidney stone disease. Am J Nephrol 2001; 21:69–71.
  • Schnellman RG, Yang X, Carrick JB. Arachidonic acid release in renal proximal tubule cell injuries and death. J Biochem Toxicol 1994; 9:211–217.
  • Huang HS, Ma MC, Chen J, Chen CF. Changes in the oxidant-antioxidant balance in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Urol 2002; 167:2584–2593.
  • Thamilselvan S, Hackett RL, Khan SR. Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol 1997; 157:1059–1063.
  • Scheid C, Koul H, Hill WA, Luber-Narod J, Kennington L. Oxalate toxicity in LLC-PK1 cells: role of free radicals. Kidney Int 1996; 49:413–419.
  • Thamilselvan S, Byer KJ, Hackett RL, Khan SR. Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol 2000; 164:224–229.
  • Green ML, Freel RW, Hatch M. Lipid peroxidation is not the underlying cause of renal injury in hyperoxaluric rats. Kidney Int 2005; 68:2629–2638.
  • Khand FD, Gordge MP, Robertson WG, Noronha-Dutra AA, Hothersall JS. Mitochondrial superoxide production during oxalate-mediated oxidative stress in renal epithelial cells. Free Radic Biol Med 2002; 32:1339–1350.
  • Cao LC, Honeyman TW, Cooney R, Kennington L, Scheid CR, Jonassen JA. Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int 2004; 66:1890–1900.
  • Lash LH, Jones DP. Mitochondrial toxicity in renal injury. In: Lash LH, Zalups RK, eds. Methods in Toxicology. Boco Raton, FL: CRC Press; 1996:299–330.
  • Wallace KB, Starkov AA. Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol 2000; 40:353–388.
  • Colell A, Garcia-Ruiz C, Lluis JM, Coll O, Mari M, Fernandez-Checa JC. Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J Biol Chem 2003; 278:33928–33935.
  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005; 434:652–658.
  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005; 434:658–662.
  • Hovda KE, Austin R, McMartin K. Presence of calcium oxalate crystals inside renal tubular cells: assessment by transmission electron microscope. Clin Toxicol 2006; 44:633.
  • Broekemeier KM, Dempsey ME, Pfeiffer DR. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 1989; 264:7826–7830.
  • Strzelecki T, McGraw BR, Scheid CR, Menon M. Effect of oxalate on function of kidney mitochondria. J Urol 1989; 141:423–427.
  • Veena CK, Josephine A, Preetha SP, Rajesh NG, Varalakshmi P. Mitochondrial dysfunction in an animal model of hyperoxaluria: a prophylactic approach with fucoidan. Eur J Pharmacol 2008; 579:330–336.
  • Corley RA, Bartels MJ, Weitz KK, Soelberg JJ, Gies RA, Thrall KD. Development of a physiologically based pharmacokinetic model for ethylene glycol and its developmentally toxic metabolite, glycolic acid, in adult rats and humans. Toxicol Sci 2005; 85:476–490.
  • Knörle R, Schnierle P, Koch A, Buchholz NP, Hering F, Seiler H, Ackermann T, Rutishauser G. Tamm-Horsfall glycoprotein: role in inhibition and promotion of renal calcium oxalate stone formation studied with Fourier-transform infrared spectroscopy. Clin Chem 1994; 40:1739–1743.
  • Mo L, Huang HY, Zhu XH, Shapiro E, Hasty DL, Wu XR. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int 2004; 66:1159–1166.
  • Wesson JA, Johnson RJ, Mazzali M, Beshensky AM, Stietz S, Giachelli C, Liaw L, Alpers CE, Couser WG, Kleinman JG, Hughes J. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 2003; 14:139–147.
  • Kumar V, Farell G, Lieske JC. Whole urinary proteins coat calcium oxalate monohydrate crystals to greatly decrease their adhesion to renal cells. J Urol 2003; 170:221–225.
  • Kumar C, Peña de la Vega L, Farell G, Lieske JC. Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells in impaired in male stone formers. Kidney Int 2005; 68:1784–1792.
  • Hesse A, Brändle E, Wilbert D. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur Urol 2003; 44:709–713.
  • Curhan GC. Epidemiologic evidence for the role of oxalate in idiopathic nephrolithiasis. J Endourol 1999; 13:629–631.
  • Ramello A, Vitale C, Marangella M. Epidemiology of nephrolithiasis. J Nephrol 2000; 13(Suppl 3):S45–S50.
  • van AP E, Coe FL, Lingeman JE, Worcester E. Insights on the pathology of kidney stone formation. Urol Res 2005; 33:383–389.
  • Milliner DS, Wilson DM, Smith LH. Phenotypic expression of primary hyperoxaluris: comparative features of types I and II. Kidney Int 2001; 59:31–36.
  • Jacobsen D. New treatment for ethylene glycol poisoning. New Engl J Med 1999; 340:879–881.
  • Mattle D, Hess B. Preventive treatment of nephrolithiasis with alkali citrate-a critical review. Urol Res 2005; 33:73–79.
  • Qiu SR, Wierzbicki A, Salter EA, Zepeda S, Orme CA, Hoyer JR, Nancollas GH, Cody AM, De Yoreo JJ. Modulation of calcium oxalate monohydrate crystallization by citrate through selective binding to atomic steps. J Am Chem Soc 2005; 127:9036–9044.
  • Allie-Hamdulay S, Rodgers AL. Prophylactic and therapeutic properties of a sodium citrate preparation in the management of calcium oxalate urolithiasis: randomized, placebo-controlled trial. Urol Res 2005; 33:116–124.
  • Guo C, McMartin KE. Aluminum citrate inhibits cytotoxicity and aggregation of oxalate crystals. Toxicology 2007; 230:117–125.
  • Besenhofer L, Cain M, McMartin KE. Aluminum citrate treatment decreases the renal toxicity associated with ethylene glycol poisoning in Wistar rats. FASEB J 2008; 22:917.8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.