354
Views
79
CrossRef citations to date
0
Altmetric
Review Articles

Potential pulmonary effects of engineered carbon nanotubes: in vitro genotoxic effects

, &
Pages 396-408 | Received 19 Jan 2010, Accepted 07 Jun 2010, Published online: 15 Jul 2010

References

  • Aardema MJ, Albertini S, Arni P, Henderson LM, Kirsch-Volders M, Mackay JM, Sarrif AM, Stringer DA, Taalman RD. 1998. Aneuploidy: A report of an ECETOC task force. Mutat Res 410:3–79.
  • Aitken RJ, Chaudhry MQ, Boxall AB, Hull M. 2006. Manufacture and use of nanomaterials: Current status in the UK and global trends. Occup Med (Lond) 56:300–306.
  • Ault JG, Cole RW, Jensen CG, Jensen LC, Bachert LA, Rieder CL. 1995. Behavior of crocidolite asbestos during mitosis in living vertebrate lung epithelial cells. Cancer Res 55:792–798.
  • Bachand M, Trent AM, Bunker BC, Bachand GD. 2005. Physical factors affecting kinesin-based transport of synthetic nanoparticle cargo. J Nanosci Nanotechnol 5:718–722.
  • Baker DJ, Jin F, Jeganathan KB, van Deursen JM. 2009. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 16:475–486.
  • Bottini M, Balasubramanian C, Dawson MI, Bergamaschi A, Bellucci S, Mustelin T. 2006a. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110:831–836.
  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T. 2006b. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126.
  • Bottini M, Cerignoli F, Dawson MI, Magrini A, Rosato N, Mustelin T. 2006c. Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. Biomacromolecules 7:2259–2263.
  • Bradley J, Nordan MM, Tassinari O. 2009. The recession's ripple effect on nanotech. Boston, MA: Lux Research, Inc.
  • Brier S, Lemaire D, DeBonis S, Forest E, Kozielski F. 2006. Molecular dissection of the inhibitor binding pocket of mitotic kinesin Eg5 reveals mutants that confer resistance to antimitotic agents. J Mol Biol 360:360–376.
  • Caperta AD, Delgado M, Ressurreicao F, Meister A, Jones RN, Viegas W, Houben A. 2006. Colchicine-induced polyploidization depends on tubulin polymerization in c-metaphase cells. Protoplasma 227:147–153.
  • Chan PC, Bristol DW, Bucher JR, Burka LT, Chahabra RS, Herbert RA, ing-Herbert AP, Kissling DE, Malarkey DF, Peddada SD, Roycroft JH, Smith CS, Travlos GS, Witt KL, Sills RC. 2007. Toxicology and carcinogenesis studies of cumene in F344/N rats and B6C3F1 mice (inhalation studies). In NTP TR 542 (National Toxicology Program). pp 1–104.
  • Cortez BA, Machado-Santelli GM. 2008. Chrysotile effects on human lung cell carcinoma in culture: 3-D reconstruction and DNA quantification by image analysis. BMC Cancer 8:181.
  • Cveticanin J, Joksic G, Leskovac A, Petrovic S, Sobot AV, Neskovic O. 2010. Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells. Nanotechnology 21:015102.
  • Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH. 2003. Super-tough carbon-nanotube fibres – these extraordinary composite fibres can be woven into electronic textiles. Nature 423:703–703.
  • Dinu CZ, Bale SS, Zhu G, Dordick JS. 2009. Tubulin encapsulation of carbon nanotubes into functional hybrid assemblies. Small 5:310–315.
  • Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, Jenkins GJ. 2009. Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24:285–293.
  • Donaldson K, Poland CA. 2009. Nanotoxicology: New insights into nanotubes. Nat Nanotechnol 4:708–710.
  • Du YZ, Hiratsuka Y, Taira S, Eguchi M, Uyeda TQP, Yumoto N, Kodaka M. 2005. Motor protein nano-biomachine powered by self-supplying ATP. Chem Commun 16:2080–2082.
  • Ehrhardt AG, Sluder G. 2005. Spindle pole fragmentation due to proteasome inhibition. J Cell Physiol 204:808–818.
  • Evans JA, Mocz G, Gibbons IR. 1986. Activation of dynein 1 adenosine triphosphatase by monovalent salts and inhibition by vanadate. J Biol Chem 261:14039–14043.
  • Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Moller P. 2009. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117:703–708.
  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee SB, Ji JH, Cho MH, Yu IJ. 2008. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 20:741–749.
  • Heald R. 2000. Motor function in the mitotic spindle. Cell 102:399–402.
  • Hess H, Tseng Y. 2007. Active intracellular transport of nanoparticles: Opportunity or threat? ACS Nano 1:390–392.
  • Hirokawa N, Noda Y, Okada Y. 1998. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 10:60–73.
  • Hong HH, Dunnick J, Herbert R, Devereux TR, Kim Y, Sills RC. 2007. Genetic alterations in K-ras and p53 cancer genes in lung neoplasms from Swiss (CD-1) male mice exposed transplacentally to AZT. Environ Mol Mutagen 48:299–306.
  • Hornick JE, Bader JR, Tribble EK, Trimble K, Breunig JS, Halpin ES, Vaughan KT, Hinchcliffe EH. 2008. Live-cell analysis of mitotic spindle formation in taxol-treated cells. Cell Motil Cytoskeleton 65:595–613.
  • Huang HJ, Kajiura H, Yamada A, Ata M. 2002. Purification and alignment of arc-synthesis single-walled carbon nanotube bundles. Chem Phys Lett 356:567–572.
  • Hubbs AF, Mercer RR, Coad JE, Battelli LA, Willard P, Sriram K, Wolfarth M, Castranova V, Porter D. 2009. Persistent pulmonary inflammation, airway mucous metaphasia and migration of multi-walled carbon nanotubes from the lung after subchronic exposure. Toxicologist 108:2193.
  • Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Shin JS, Suh JS, 2005. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127:12387–12391.
  • Ichihara G, Castranova V, Tanioka A, Miyazawa K. 2008. Re: Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33,381–382; author reply 382–384.
  • Jacobsen NR, Moller P, Jensen KA, Vogel U, Ladefoged O, Loft S, Wallin H. 2009. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol 6:2.
  • Jiang Q, Ren Y, Feng J. 2008. Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome. J Neurosci 28:12993–3002.
  • Ju-Nam Y, Lead JR. 2008. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414.
  • Kanno J, Takagi A, Nishimura T, Hlrose A. 2010. Mesothelioma induction by micrometer-sized multi-walled carbon nanotube intraperitoneally injected to p53 heterozygous mice. In: The toxicologist. Salt Lake City, Utah: Oxford University Press. pp A1397.
  • Kapitein LC, Peterman EJG, Kwok BH, Kim JH, Kapoor TM, Schmidt CF. 2005. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–118.
  • Kikkawa M. 2008. The role of microtubules in processive kinesin movement. Trends Cell Biol 18:128–135.
  • Kisin ER, Murray AR, Keane MJ, Shi XC, Schwegler-Berry D, Gorelik O, Arepalli S, Castranova V, Wallace WE, Kagan VE, 2007. Single-walled carbon nanotubes: Geno- and cytotoxic effects in lung fibroblast V79 cells. J Toxicol Environ Health A 70:2071–2079.
  • Kline-Smith SL, Walczak CE. 2004. Mitotic spindle assembly and chromosome segregation: Refocusing on microtubule dynamics. Molec Cell 15:317–327.
  • Kobayashi T, Murayama T. 2009. Cell cycle-dependent microtubule-based dynamic transport of cytoplasmic dynein in mammalian cells. PLoS One 4:e7827.
  • Koyama S, Haniu H, Osaka K, Koyama H, Kuroiwa N, Endo M, Kim YA, Hayashi T. 2006. Medical application of carbon-nanotube-filled nanocomposites: The microcatheter. Small 2:1406–1411.
  • Kurasawa Y, Earnshaw WC, Mochizuki Y, Dohmae N, Todokoro K. 2004. Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J 23:3237–3248.
  • Langer AM, Nolan RP. 1994. Chrysotile: Its occurrence and properties as variables controlling biological effects. Ann Occup Hyg 38:427–451, 407.
  • Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LSB, Goodson HV, Hirokawa N, Howard J, 2004. A standardized kinesin nomenclature. J Cell Biol 167:19–22.
  • Li X, Peng Y, Qu X. 2006a. Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res 34:3670–3676.
  • Li X, Peng Y, Ren J, Qu X. 2006b. Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. Proc Natl Acad Sci USA 103:19658–19663.
  • Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalan J, Savolainen K, Norppa H. 2009. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186:166–173.
  • Lingle WL, Lukasiewicz K, Salisbury JL. 2005. Deregulation of the centrosome cycle and the origin of chromosomal instability in cancer. Adv Exp Med Biol 570:393–421.
  • Malarkey EB, Parpura V. 2007. Applications of carbon nanotubes in neurobiology. Neurodegener Dis 4:292–299.
  • Mandeville EC, Rieder CL. 1990. Keratin filaments restrict organelle migration into the forming spindle of newt pneumocytes. Cell Motil Cytoskeleton 15:111–120.
  • Mangum JB, Turpin EA, Antao-Menezes A, Cesta MF, Bermudez E, Bonner JC. 2006. Single-walled carbon nanotube (SWCNT)-induced interstitial fibrosis in the lungs of rats is associated with increased levels of PDGF mRNA and the formation of unique intercellular carbon structures that bridge alveolar macrophages in situ. Part Fibre Toxicol 3:15.
  • Martin W, Zhu W, Krilov G. 2008. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water. J Phys Chem B 112:16076–16089.
  • Masuda H, Cande WZ. 1987. The role of tubulin polymerization during spindle elongation in vitro. Cell 49:193–202.
  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. 2004. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107.
  • Mazumdar M, Misteli T. 2005. Chromokinesins: Multitalented players in mitosis. Trends in Cell Biol 15:349–355.
  • Mazumdar M, Sundareshan S, Misteli T. 2004. Human chromokinesin KIF4A functions in chromosome condensation and segregation. J Cell Biol 166:613–620.
  • McIntosh JR, Grishchuk EL, West RR. 2002. Chromosome-microtubule interactions during mitosis. Annu Rev Cell Dev Biol 18:193–219.
  • Mercer RR, Scabilloni J, Wang L, Kisin E, Murray AR, Schwegler-Berry D, Shvedova AA, Castranova V. 2008. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol 294:L87–97.
  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Castranova V, Porter D. 2010. Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Am J Respir Crit Care Med 181:A3102.
  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE. 2005. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384.
  • Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, Lison D, Kirsch-Volders M. 2008. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29:427–433.
  • Oberdörster G. 2010. Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology. J Int Med 267:89–105.
  • Ochi T. 2002. Role of mitotic motors, dynein and kinesin, in the induction of abnormal centrosome integrity and multipolar spindles in cultured V79 cells exposed to dimethylarsinic acid. Mutat Res 499:73–84.
  • Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Sbarra D, Hoover MD, Castranova V, 2008. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116:1211–1217.
  • Pagona G, Tagmatarchis N. 2006. Carbon nanotubes: Materials for medicinal chemistry and biotechnological applications. Curr Med Chem 13:1789–1798.
  • Pampaloni F, Florin EL. 2008. Microtubule architecture: Inspiration for novel carbon nanotube-based biomimetic materials. Trends Biotechnol 26:302–310.
  • Pantarotto D, Briand JP, Prato M, Bianco A. 2004. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 1:16–17.
  • Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, 2004. EGF receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101:13306–13311.
  • Pearson CG, Gardner MK, Paliulis LV, Salmon ED, Odde DJ, Bloom K. 2006. Measuring nanometer scale gradients in spindle microtubule dynamics using model convolution microscopy. Molec Biol Cell 17:4069–4079.
  • Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P, Doxsey SJ. 1998. Centrosome defects and genetic instability in malignant tumors. Cancer Res 58:3974–3985.
  • Pitot HC. 1996. Stage-specific gene expression during hepatocarcinogenesis in the rat. J Cancer Res Clin Oncol 122:257–265.
  • Pitot HC. 2007. Adventures in hepatocarcinogenesis. Annu Rev Pathol 2:1–29.
  • Pitot HC, Campbell HA, Maronpot R, Bawa N, Rizvi TA, Xu YH, Sargent L, Dragan Y, Pyron M. 1989. Critical parameters in the quantitation of the stages of initiation, promotion, and progression in one model of hepatocarcinogenesis in the rat. Toxicol Pathol 17:594–611; discussion 611–612.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428.
  • Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M. 2007. Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717.
  • Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269:136–147.
  • Prakash S, Kulamarva AG. 2007. Recent advances in drug delivery: Potential and limitations of carbon nanotubes. Recent Pat Drug Deliv Formul 1:214–221.
  • Pulskamp K, Diabate S, Krug HF. 2007. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74.
  • Ramachandran S, Ernst KH, Bachand GD, Vogel V, Hess H. 2006. Selective loading of kinesin-powered molecular shuttles with protein cargo and its application to biosensing. Small 2:330–334.
  • Ramirez P, Eastmond DA, Laclette JP, Ostrosky-Wegman P. 1997. Disruption of microtubule assembly and spindle formation as a mechanism for the induction of aneuploid cells by sodium arsenite and vanadium pentoxide. Mutat Res 386:291–298.
  • Rubin H. 2001. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: A bio-historical perspective with updates. Carcinogenesis 22:1903–1930.
  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, 2009. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4:747–751.
  • Sakamoto Y, Nakae D, Fukumori N, Tayama K, Maekawa A, Imai K, Hirose A, Nishimura T, Ohashi N, Ogata A. 2009. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 34:65–76.
  • Salisbury JL. 2007. A mechanistic view on the evolutionary origin for centrin-based control of centriole duplication. J Cell Physiol 213:420–428.
  • Salisbury JL. 2008. Breaking the ties that bind centriole numbers. Nat Cell Biol 10:255–257.
  • Salisbury JL, D'Assoro AB, Lingle WL. 2004. Centrosome amplification and the origin of chromosomal instability in breast cancer. J Mammary Gland Biol Neoplasia 9:275–283.
  • Sargent L, Shvedova AA, Hubbs AF, Lowry DT, Kashon ML, Murray A, Kisin E, Benkovic SA, Miller DB, KT, M, 2009a. Induction of aneuploidy by single walled carbon nanotubes. Toxicol Sci (Supp.)113:411.
  • Sargent LM, Ensell MX, Ostvold AC, Baldwin KT, Kashon ML, Lowry DT, Senft JR, Jefferson AM, Johnson RC, Li Z, 2008. Chromosomal changes in high- and low-invasive mouse lung adenocarcinoma cell strains derived from early passage mouse lung adenocarcinoma cell strains. Toxicol Appl Pharmacol 233:81–91.
  • Sargent LM, Shvedova AA, Hubbs AF, Salisbury JL, Benkovic SA, Kashon ML, Lowry DT, Murray AR, Kisin ER, Friend S, 2009b. Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol Mutagen 50:708–717.
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, 2008. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295:L552–565.
  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–708.
  • Sickles DW, Sperry AO, Testino A, Friedman M. 2007. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle. Toxicol Appl Pharmacol 222:111–121.
  • Sinha N, Yeow JT. 2005. Carbon nanotubes for biomedical applications. IEEE Trans Nanobioscience 4:180–195.
  • Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, Smith A. 1981. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst 67:965–975.
  • Taira S, Du YZ, Hiratsuka Y, Uyeda TQ, Yumoto N, Kodaka M. 2008. Loading and unloading of molecular cargo by DNA-conjugated microtubule. Biotechnol Bioeng 99:734–739.
  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J. 2008. Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116.
  • Tam IY, Chung LP, Suen WS, Wang E, Wong MC, Ho KK, Lam WK, Chiu SW, Girard L, Minna JD, 2006. Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res 12:1647–1653.
  • Tucker JD, Preston RJ. 1996. Chromosome aberrations, micronuclei, aneuploidy, sister chromatid exchanges, and cancer risk assessment. Mutat Res 365:147–159.
  • Worle-Knirsch JM, Pulskamp K, Krug HF. 2006. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268.
  • Yang H, Liu C, Yang D, Zhang H, Xi Z. 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J Appl Toxicol 29:69–78.
  • Yeates TO, Padilla JE. 2002. Designing supramolecular protein assemblies. Curr Opin Struct Biol 12:464–470.
  • Yeganeh B, Kull CM, Hull MS, Marr LC. 2008. Characterization of airborne particles during production of carbonaceous nanomaterials. Environ Sci Technol 42:4600–4606.
  • Yinghuai Z, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M. 2005. Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neutron capture therapy drug delivery. J Am Chem Soc 127:9875–9880.
  • Zhapparova ON, Burakov AV, Nadezhdina ES. 2007. The centrosome keeps nucleating microtubules but loses the ability to anchor them after the inhibition of dynein-dynactin complex. Biochemistry (Mosc) 72:1233–1240.
  • Zimmerman W, Doxsey SJ. 2000. Construction of centrosomes and spindle poles by molecular motor-driven assembly of protein particles. Traffic 1:927–934.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.