543
Views
85
CrossRef citations to date
0
Altmetric
Research Article

Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: The role of size, concentration and exposure time

, , , , &
Pages 144-160 | Received 09 Nov 2010, Accepted 07 Feb 2011, Published online: 21 Mar 2011

References

  • Atienzar FA, Conradi M, Evenden AJ, Jha AN, Depledge MH. 1999. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: Comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo a pyrene. Environ Toxicol Chem 18:2275–2282.
  • Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Briois V, Chaneac C, Olivi L, Berge-Lefranc JL, Botta A, Wiesner MR, Bottero JY. 2006. In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: A physicochemical and cyto-genotoxical study. Environ Sci Technol 40:4367–4373.
  • Brandenberger C, Rothen-Rutishauser B, Muhlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG. 2010. Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol 242:56–65.
  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199.
  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ. 2006. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381.
  • Cambier S, Gonzalez P, Durrieu G, Bourdineaud, JP. 2010. Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicol Environ Saf 73:312–319.
  • Cheng JP, Chan CM, Veca LM, Poon WL, Chan PK, Qu LW, Sun YP, Cheng SH. 2009. Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol Appl Pharmacol 235:216–225.
  • Chithrani BD, Ghazani AA, Chan WCW. 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668.
  • Cho MJ, Cho WS, Choi M, Kim SJ, Han BS, Kim SH, Kim HO, Sheen YY, Jeong JY. 2009a. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 189:177–183.
  • Cho WS, Kim S, Han BS, Son WC, Jeong J. 2009b. Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett 191:96–102.
  • Choi AO, Cho SJ, Desbarats J, Lovric J, Maysinger D. 2007. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnology 5:1.
  • Choi CHJ, Alabi CA, Webster P, Davis ME. 2010a. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA 107:1235–1240.
  • Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY. 2010b. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–159.
  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. 2005. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327.
  • Croteau MN, Dybowska AD, Luoma SN, Valsami-Jones E. 2010. A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures. Nanotoxicology. Early online.
  • De Jong WH, Hagens WI, Krystek P, Burger MC, Sips A, Geertsma RE. 2008. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919.
  • Fako VE, Furgeson DY. 2009. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliv Rev 61:478–486.
  • Farré M, Gajda-Schrantz K, Kantiani L, Barceló D. 2009. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95.
  • Federici G, Shaw BJ, Handy RD. 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430.
  • Ferry JL, Graig P, Hexel C, Sisco P, Frey R, Pennington PL, Fulton MH, Scott IG, Decho AW, Kashiwada S, 2009. Transfer of gold nanoparticles from water column to the estuarine food web. Nature Nanotech 4:441–444.
  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C. 2002. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294:116–119.
  • Gonzalez P, Baudrimont M, Boudou A, Bourdineaud JP. 2006. Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebrafish (Danio rerio). Biometals 19:225–235.
  • Goodman CM, Chari NS, Han, G, Hong R, Ghosh P, Rotello VM. 2006. DNA-binding by functionalized gold nanoparticles: mechanism and structural requirements. Chem Biol Drug Des 67:297–304.
  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS. 2007. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186.
  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS. 2009. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415.
  • Hillyer JF, Albrecht RM. 2001. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936.
  • Johnston BD, Scown TM, Moger J, Cumberland SA, Baalousha M, Linge K, van Aerle R, Jarvis K, Lead JR, Tyler CR. 2010. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ Sci Technol 44:1144–1151.
  • Jonz MG, Nurse CA. 2005. Development of oxygen sensing in the gills of zebrafish. J Exp Biol 208(Pt 8):1537–1549.
  • Ju-Nam Y, Lead JR. 2008. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414.
  • Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M. 2010. Release of silver nanoparticles from outdoor façades. Environ Pollut 158:2900–2905.
  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M. 2008. Synthetic TiO2 nanoparticle emission from exterior façades into the aquatic environment. Environ Pollut 156:233–239.
  • Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. 2006. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707.
  • Letellier T, Malgat M, Coquet M, Moretto B, Parrotroulaud F, Mazat JP. 1992. Mitochondrial myopathy studies on permeabilized muscle-fibers. Pediatr Res 32:17–22.
  • Lovern SB, Klaper R. 2006. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137.
  • Moore MN. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976.
  • Nichols RJ, Burgess I, Young KL, Zamlynny V, Lipkowski J. 2004. A quantitative evaluation of the adsorption of citrate on Au(1 1 1) using SNIFTIRS. J Electroanal Chem 563:33–39.
  • Oberdörster E. 2004. Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062.
  • östberg O. 1931. Studien über die Zitronensäureausscheidung der Menschenniere in normalen und pathologischen Zuständen. Skand Arch Physiol 62:81–222.
  • Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L. 2004. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183.
  • Ramsden CS, Smith TJ, Shaw BJ, Handy RD. 2009. Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): No effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18:939–951.
  • Reeves JF, Davies SJ, Dodd NJF, Jha AN. 2008. Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 640:113–122.
  • Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A. 2008. Impacts of gold nanoparticle exposure on two freshwater species: A phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41:116–126.
  • Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. 2006. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 40:4353–4359.
  • Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR. 2010. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–534.
  • Sjöström P. 1937. Der Citratgehalt in Blutserum als Diagnosticum bein Krankheiten der Leber und der Gallenwege; Eine Methodologische Tierexperimentelle und Klinische Studie. Acta Chir Scand 79: 1 (Suppl. 49).
  • Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328–333.
  • Tedesco S, Doyle H, Redmond G, Sheehan D. 2008. Gold nanoparticles and oxidative stress in Mytilus edulis. Mar Environ Res 66:131–133.
  • Usenko CY, Harper SL, Tanguay RL. 2007. In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–1898.
  • Wang Y, Fang J, Leonard SS, Rao KM. 2004. Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Rad Biol Med 36:1434–1443.
  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z. 2007. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185.
  • Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q. 2008. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–1128.
  • Wang X, Tao G, Meng Y. 2009. Nanogold hollow microsphere-based electrochemical immunosensor for the detection of ferritin in human serum. Microchimica Acta 167:147–152.
  • Westerfield M. 2007. In: The zebrafish book: A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. Eugene, OR: University of Oregon Press.
  • Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G. 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicol 100:160–167.
  • Yeo MK, Kang M. 2009. Effects of CuxTiOy nanometer particles on biological toxicity during zebrafish embryogenesis. Korean J Chem Eng 26:711–718.
  • Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie SM, O'Regan RM. 2006. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7:657–667.
  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y, 2009. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20:195103.
  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y. 2010. Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79:928–933.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.