276
Views
64
CrossRef citations to date
0
Altmetric
Research Article

Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes

, , , , , , , , & show all
Pages 526-542 | Received 20 Dec 2010, Accepted 27 Apr 2011, Published online: 09 Jun 2011

References

  • Badr K, Wainwright CL. 2004. Inflammation in the cardiovascular system: Here, there and everywhere. Curr Opin Pharmacol 4(2):107.
  • Bagate K, Meiring JJ, Gerlofs-Nijland ME, Vincent R, Cassee FR, Borm PJA. 2004. Vascular effects of ambient particulate matter instillation in spontaneous hypertensive rats. Toxicol Appl Pharmacol 197(1):29–39.
  • Cao Q, Zhang S, Dong C, Song W. 2007. Pulmonary responses to fine particles: Differences between the spontaneously hypertensive rats and wistar kyoto rats. Toxicol Lett 171(3):126–137.
  • Cheng C, Müller KH, Koziol KKK, Skepper JN, Midgley PA, Welland ME, 2009. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30(25):4152–4160.
  • Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, 2008. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8(2):437–445.
  • Delfino RJ, Staimer N, Tjoa T, Polidori A, Arhami M, Gillen DL, 2008. Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ Health Perspect 116(7):898.
  • Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, 2007. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45(7):1419–1424.
  • Donaldson K, Stone V, Seaton A, MacNee W. 2001. Ambient particle inhalation and the cardiovascular system: Potential mechanisms. Environ Health Perspect 109:523–527.
  • Elder A, Couderc JP, Gelein R, Eberly S, Cox C, Xia X, 2007. Effects of on-road highway aerosol exposures on autonomic responses in aged, spontaneously hypertensive rats. Inhal Toxicol 19(1):1–12.
  • Ercal N, Gurer-Orhan H, Aykin-Burns N. 2001. Toxic metals and oxidative stress. Part I: Mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1(6):529–539.
  • Erdely A, Hulderman T, Salmen R, Liston A, Zeidler-Erdely PC, Schwegler-Berry D, 2008. Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett 9(1):36–43.
  • Gauderman WJ, Avol E, Gilliland F, Vora H, Thomas D, Berhane K, 2004. The effect of air pollution on lung development from 10 to 18 years of age. New Engl J Med 351(11):1057–1067.
  • Ge C, Lao F, Li W, Li Y, Chen C, Qiu Y, 2008. Quantitative analysis of metal impurities in carbon nanotubes: Efficacy of different pretreatment protocols for ICPMS spectroscopy. Anal Chem 80(24):9426–9434.
  • Guo L, Morris DG, Liu X, Vaslet C, Hurt RH, Kane AB. 2007. Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem Mater 19(14):3472–3478.
  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, 2006. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol Lett 165(1):88–100.
  • Kobayashi N, Naya M, Ema M, Endoh S, Maru J, Mizuno K, 2010. Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicol 276(3):143–153.
  • Kostarelos K. 2008. The long and short of carbon nanotube toxicity. Nat Biotechnol 26(7):774–776.
  • Lam CW, James JT, McCluskey R, Hunter RL. 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126.
  • Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, 2007. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115(3):377.
  • Liu LJS, Box M, Kalman D, Kaufman J, Koenig J, Larson T, 2003. Exposure assessment of particulate matter for susceptible populations in Seattle. Environ Health Perspect 111(7):909.
  • Liu X, Guo L, Morris D, Kane AB, Hurt RH. 2008. Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon 46(3):489–500.
  • Liu X, Gurel V, Morris D, Murray DW, Zhitkovich A, Kane AB, 2007. Bioavailability of nickel in single-wall carbon nanotubes. Adv Mater 19(19):2790–2796.
  • Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, 2009. Inhalation toxicity of multi-wall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112(2):468–481.
  • Mantile G, Miele L, Cordella-Miele E, Singh G, Katyal SL, Mukherjee AB. 1993. Human Clara cell 10-kDa protein is the counterpart of rabbit uteroglobin. J Biol Chem 268(27):20343.
  • Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. 2007. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100(1):203.
  • Mohanapriya S, Lakshminarayanan V. 2007. Simultaneous purification and spectrophotometric determination of nickel present in as-prepared single-walled carbon nanotubes (SWCNT). Talanta 71(1):493–497.
  • Muller J, Huaux F, Fonseca A, Nagy JB, Moreau N, Delos M, 2008. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: Toxicological aspects. Chem Res Toxicol 21(9):1698–1705.
  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231.
  • Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, 2009. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257(3):161–171.
  • Plata DL, Gschwend PM, Reddy CM. 2008. Industrially synthesized single-walled carbon nanotubes: Compositional data for users, environmental risk assessments, and source apportionment. Nanotechnology 19:185706.
  • Pope CA III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, 2004. Cardiovascular mortality and long-term exposure to particulate air pollution. Circulation 109(1):71–77.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotech 3(7):423–428.
  • Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, 2010. Mouse pulmonary dose-and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2–3):136–147.
  • Pulskamp K, Diabaté S, Krug HF. 2007. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74.
  • Pumera M. 2007. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Langmuir 23(11):6453–6458.
  • Rückerl R, Phipps RP, Schneider A, Frampton M, Cyrys J, Oberdörster G, 2007. Ultrafine particles and platelet activation in patients with coronary heart disease – results from a prospective panel study. Part Fibre Toxicol 4(1):1743–8977.
  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, 2009. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nature Nanotech 4(11): 747–751.
  • Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. 2000. Fine particulate air pollution and mortality in 20 US cities, 1987–1994. New Engl J Med 343(24):1742.
  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, 2006. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161(2):135–142.
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, 2008. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis. Am J P- Lung 295(4):L552.
  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J P- Lung 289(5):L698.
  • Smart SK, Cassady AI, Lu GQ, Martin DJ. 2006. The biocompatibility of carbon nanotubes. Carbon 44(6):1034–1047.
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40.
  • Vanhoutte PM. 1997. Endothelial dysfunction and atherosclerosis. Eur Heart J 18(Suppl. E):19.
  • Walker VG, Li Z, Hulderman T, Schwegler-Berry D, Kashon ML, Simeonova PP. 2009. Potential in vitro effects of carbon nanotubes on human aortic endothelial cells. Toxicol Appl Pharmacol 236(3):319–328.
  • Wang X, Jia G, Wang H, Nie H, Yan L, Deng XY, 2009. Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J Nanosci Nanotech 9(5):3025–3033.
  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. 2004. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117.
  • Wolff SP. 1993. Diabetes mellitus and free radicals: Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 49(3):642.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.