214
Views
28
CrossRef citations to date
0
Altmetric
Original Article

Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts

, , , , , , & show all
Pages 38-49 | Received 31 Jul 2012, Accepted 15 Oct 2012, Published online: 23 Nov 2012

References

  • Bell R.M, Mocanu M.M, Yellon D.M. 2011. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 50(6):940–950.
  • Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Ez-Roux AV, et al. 2010. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121(21):2331–2378.
  • Brown D.A, O'Rourke B. 2010. Cardiac mitochondria and arrhythmias. Cardiovasc Res 88(2):241–249.
  • Brown D.A, Jew K.N, Sparagna G.C, Musch T.I, Moore R.L. 2003. Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. J Appl Physiol 95(6):2510–2518.
  • Brunner F, Du Toit EF, Opie LH. 1992. Endothelin release during ischaemia and reperfusion of isolated perfused rat hearts. J Mol Cell Cardiol 24(11):1291–1305.
  • Callera G, Tostes R, Savoia C, Muscara M.N, Touyz R.M. 2007. Vasoactive peptides in cardiovascular (patho)physiology. Expert Rev Cardiovasc Ther 5(3):531–552.
  • Cascio W.E, Cozzi E, Hazarika S, Devlin R.B, Henriksen R.A, Lust R.M, et al. 2007. Cardiac and vascular changes in mice after exposure to ultrafine particulate matter. Inhal Toxicol 19(Suppl 1):67–73.
  • Cherng T.W, Campen M.J, Knuckles T.L, Gonzalez B.L, Kanagy N.L. 2009. Impairment of coronary endothelial cell ET(B) receptor function after short-term inhalation exposure to whole diesel emissions. Am J Physiol Regul Integr Comp Physiol 297(3):R640–R647.
  • Cherng T.W, Paffett M.L, Jackson-Weaver O, Campen M.J, Walker B.R, Kanagy N.L. 2011. Mechanisms of diesel-induced endothelial nitric oxide synthase dysfunction in coronary arterioles. Environ Health Perspect 119(1):98–103.
  • Coker S.J, Parratt J.R, Ledingham I.M, Zeitlin I.J. 1981. Thromboxane and prostacyclin release from ischaemic myocardium in relation to arrhythmias. Nature 291(5813):323–324.
  • Cozzi E, Hazarika S, Stallings H.W 3rd, Cascio W.E, Devlin R.B, Lust R.M, et al. 2006. Ultrafine particulate matter exposure augments ischemia-reperfusion injury in mice. Am J Physiol Heart Circ Physiol 291(2):H894–H903.
  • Desjardins F, Aubin M.C, Carrier M, Perrault L.P. 2005. Decrease of endothelin receptor subtype ETB and release of COX-derived products contribute to endothelial dysfunction of porcine epicardial coronary arteries in left ventricular hypertrophy. J Cardiovasc Pharmacol 45(6):499–508.
  • Dogan S, Turnbaugh D, Zhang M, Cofie D.Q, Fugate R.D, Kem D.C. 1997. Thromboxane A2 receptor mediation of calcium and calcium transients in rat cardiomyocytes. Life Sci 60(12):943–952.
  • Duru F, Barton M, Luscher T.F, Candinas R. 2001. Endothelin and cardiac arrhythmias: do endothelin antagonists have a therapeutic potential as antiarrhythmic drugs? Cardiovasc Res 49(2):272–280.
  • Frasier C.R, Sloan R.C, Bostian P.A, Gonzon M.D, Kurowicki J, Lopresto S.J, et al. 2011. Short-term exercise preserves myocardial glutathione and decreases arrhythmias after thiol oxidation and ischemia in isolated rat hearts. J Appl Physiol 111(6):1751–1759.
  • Gasser M, Wick P, Clift M.J, Blank F, Diener L, Yan B, et al. 2012. Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Part Fibre Toxicol 9(1):17.
  • Halpern W, Mulvany M.J. 1977. Tension responses to small length changes of vascular smooth muscle cells [proceedings]. J Physiol 265(1):21P–23P.
  • He F, Shaffer M.L, Rodriguez-Colon S, Yanosky J.D, Bixler E, Cascio W.E, et al. 2011. Acute effects of fine particulate air pollution on cardiac arrhythmia: the APACR study. Environ Health Perspect 119(7):927–932.
  • Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen L.C, Martens J.A, et al. 2009. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260(1-3):142–149.
  • Jesmin S, Yamaguchi N, Zaedi S, Nusrat S.S, Iwashima Y, Sawamura A, et al. 2011. Time-dependent expression of endothelin-1 in lungs and the effects of TNF-alpha blocking peptide on acute lung injury in an endotoxemic rat model. Biomed Res 32(1):9–17.
  • Kang Y.J, Li Y, Zhou Z, Roberts A.M, Cai L, Myers S.R, et al. 2002. Elevation of serum endothelins and cardiotoxicity induced by particulate matter (PM2.5) in rats with acute myocardial infarction. Cardiovasc Toxicol 2(4):253–261.
  • Karaa A, Kamoun W.S, Xu H, Zhang J, Clemens M.G. 2006. Differential effects of oxidative stress on hepatic endothelial and Kupffer cell eicosanoid release in response to endothelin-1. Microcirculation 13(6):457–466.
  • Kim J.B, Kim C, Choi E, Park S, Park H, Pak H.N, et al. 2012. Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation. Toxicol Appl Pharmacol 259(1):66–73.
  • Kis A, Zettl A. 2008. Nanomechanics of carbon nanotubes. Philos Transact A Math Phys Eng Sci 366(1870):1591–1611.
  • Kis A, Jensen K, Aloni S, Mickelson W, Zettl A. 2006. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys Rev Lett 97(2):025501.
  • Knuckles T.L, Yi J, Frazer D.G, Leonard H.D, Chen B.T, Castranova V, et al. 2012. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways. Nanotoxicology 6:724–735.
  • Kohan DE, Rossi NF, Inscho EW, Pollock DM. 2011. Regulation of blood pressure and salt homeostasis by endothelin. Physio Rev 91(1):1–77.
  • LeBlanc A.J, Moseley A.M, Chen B.T, Frazer D, Castranova V, Nurkiewicz T.R. 2010. Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovasc Toxicol 10(1):27–36.
  • Legramante J.M, Valentini F, Magrini A, Palleschi G, Sacco S, Iavicoli I, et al. 2009. Cardiac autonomic regulation after lung exposure to carbon nanotubes. Hum Exp Toxicol 28(6-7):369–375.
  • Li J, Zhang H, Zhang C. 2012. Role of inflammation in the regulation of coronary blood flow in ischemia and reperfusion: mechanisms and therapeutic implications. J Mol Cell Cardiol 52(4):865–872.
  • Ludbrook J. 1994. Repeated measurements and multiple comparisons in cardiovascular research. Cardiovasc Res 28(3):303–311.
  • Mercer R.R, Hubbs A.F, Scabilloni J.F, Wang L, Battelli L.A, Friend S, et al. 2011. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol 8:21.
  • Miller A.M, Zhang J.X. 2009. Altered endothelin-1 signaling in production of thromboxane A2 in kupffer cells from bile duct ligated rats. Cell Mol Immunol 6(6):441–452.
  • Miyagawa H, Misra M, Mohanty A.K. 2005. Mechanical properties of carbon nanotubes and their polymer nanocomposites. J Nanosci Nanotechnol 5(10):1593–1615.
  • Ozdemir R, Parlakpinar H, Polat A, Colak C, Ermis N, Acet A. 2006. Selective endothelin a (ETA) receptor antagonist (BQ-123) reduces both myocardial infarct size and oxidant injury. Toxicology 219(1-3):142–149.
  • Pacurari M, Castranova V, Vallyathan V. 2010. Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J Toxicol Environ Health A 73(5):378–395.
  • Pacurari M, Qian Y, Fu W, Schwegler-Berry D, Ding M, Castranova V, et al. 2012. Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J Toxicol Environ Health A 75(2):112–128.
  • Pernow J, Wang Q.D. 1997. Endothelin in myocardial ischaemia and reperfusion. Cardiovasc Res 33(3):518–526.
  • Plante M, Honore J.C, Neugebauer W, Orleans-Juste P. 2002. Endothelin-1 (1-31) induces a thiorphan-sensitive release of eicosanoids via ET(B) receptors in the guinea pig perfused lung. Clin Sci (Lond) 103(Suppl 48):128S–131S.
  • Porter D.W, Hubbs A.F, Mercer R.R, Wu N, Wolfarth M.G, et al. 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2-3):136–147.
  • Qi W, Wei J.X, Dorairaj I, Mahajan R.P, Wilson V.G. 2007. Evidence that a prostanoid produced by cyclo-oxygenase-2 enhances contractile responses of the porcine isolated coronary artery following exposure to lipopolysaccharide. Br J Anaesth 98(3):323–330.
  • Reddy A.R, Rao M.V, Krishna D.R, Himabindu V, Reddy Y.N. 2011. Evaluation of oxidative stress and anti-oxidant status in rat serum following exposure of carbon nanotubes. Regul Toxicol Pharmacol 59(2):251–257.
  • Satoh K, Fukumoto Y, Shimokawa H. 2011. Rho-kinase: important new therapeutic target in cardiovascular diseases. Am J Physiol Heart Circ Physiol 301(2):H287–H296.
  • Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R. 2007. Isolated heart perfusion according to Langendorff–still viable in the new millennium. J Pharmacol Toxicol Methods 55(2):113–126.
  • Sloan R.C, Rosenbaum M, O'Rourke D, Oppelt K, Frasier C.R, Waston C.A, et al. 2011. High doses of ketamine-xylazine anesthesia reduce cardiac ischemia-reperfusion injury in guinea pigs. J Am Assoc Lab Anim Sci 50(3):349–354.
  • Somlyo A.P, Somlyo A.V. 2000. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 522(Pt 2):177–185.
  • Stampfl A, Maier M, Radykewicz R, Reitmeir P, Gottlicher M, Niessner R. 2011. Langendorff heart: a model system to study cardiovascular effects of engineered nanoparticles. ACS Nano 5(7):5345–5353.
  • Sun Q, Yue P, Ying Z, Cardounel A.J, Brook R.D, Devlin R, et al. 2008. Air pollution exposure potentiates hypertension through reactive oxygen species-mediated activation of Rho/ROCK. Arterioscler Thromb Vasc Biol 28(10):1760–1766.
  • Wang X, Katwa P, Podila R, Chen P, Ke P.C, Rao A.M, et al. 2011a. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol 8:24.
  • Wang X, Xia T, Addo N.S, Ji Z, Lin S, Meng H, et al. 2011b. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 5(12):9772–9787.
  • Wingard C.J, Walters D.M, Cathey B.L, Hilderbrand S.C, Katwa P, Lin S, et al. 2010. Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation. Nanotoxicology 5(4):531–545.
  • Xu H, Korneszczuk K, Karaa A, Lin T, Clemens M.G, Zhang J.X. 2005. Thromboxane A2 from Kupffer cells contributes to the hyperresponsiveness of hepatic portal circulation to endothelin-1 in endotoxemic rats. Am J Physiol Gastrointest Liver Physiol 288(2):G277–G283.
  • Zweier J.L, Talukder M.A. 2006. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70(2):181–190.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.