563
Views
49
CrossRef citations to date
0
Altmetric
Original Article

DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: Evidence of a clastogenic effect as a mechanism of genotoxicity

, , , , , , , , , , & show all
Pages 696-705 | Received 06 Sep 2013, Accepted 21 Sep 2014, Published online: 17 Oct 2014

References

  • Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, et al. 2000. IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. Mutat Res 463:111–72
  • Asati A, Santra S, Kaittanis C, Nath S, Perez JM. 2009. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed 48:2308–12
  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. 2009a. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–41
  • Auffan M, Rose J, Orsière T, De Meo M, Thill A, Zeyons O, et al. 2009b. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 3:161–71
  • Benameur L, Orsière T, Rose J, Botta A. 2011. Detection of environmental clastogens and aneugens in human fibroblasts by cytokinesis-blocked micronucleus assay associated with immunofluorescent staining of CENP-A in micronuclei. Chemosphere 84:676–80
  • Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, et al. 2007. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28:625–31
  • Campbell CT, Peden CH. 2005. Chemistry: oxygen vacancies and catalysis on ceria surfaces. Science 309:713–14
  • Cheng G, Guo W, Hana L, Chen E, Kong L, Wang L, et al. 2013. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol In Vitro 27:1082–8
  • Cheng Y, Li Y, Li R, Lu J, Wang K. 2000. Orally administrated cerium chloride induces the conformational changes of rat hemoglobin, the hydrolysis of 2,3-DPG and the oxidation of heme-Fe(II), leading to changes of oxygen affinity. Chem Biol Interact 125:191–208
  • Cho WS, Duffin R, Poland CA, Howie SEM, MacNee W, Bradley M, et al. 2010. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Persp 118:1699–706
  • Culcasi M, Benameur L, Mercier A, Lucchesi C, Rahmouni H, Asteian A, et al. 2012. EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation. Chem Biol Interact 199:161–76
  • Culcasi M, Muller A, Mercier A, Clément JL, Payet O, Rockenbauer A, et al. 2006. Early specific free radical-related cytotoxicity of gas phase cigarette smoke and its paradoxical temporary inhibition by tar: an electron paramagnetic resonance study with the spin trap DEPMPO. Chem Biol Interact 164:215–31
  • De Faria LA, Trasatti S. 1994. The point of zero charge of CeO2. J Colloid Interface Sci 167:352–7
  • De Marzi L, Monaco A, De Lapuente J, Ramos D, Borras M, Di Gioacchino M, et al. 2013. Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int J Mol Sci 14:3065–77
  • Di Bucchianico S, Fabbrizi MR, Cirillo S, Uboldi C, Gilliland D, Valsami-Jones E, Migliore L. 2014. Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles. Int J Nanomedicine 9:2191–204
  • Di Cicco A, Aquilanti G, Minicucci M, Principi E, Novello N, Cognigni A, Olivi L. 2009. Novel XAFS capabilities at ELETTRA synchrotron light source. J Phys Conf Ser 190:012043
  • Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, et al. 2005. Electron localization determines defect formation on ceria substrates. Science 309:752–5
  • Eom H, Choi J. 2009. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187:77–83
  • Fenech M. 2007. Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–104
  • Gonzalez L, Thomassen LC, Plas G, Rabolli V, Napierska D, Decordier I, et al. 2010. Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models. Nanotoxicology 4:82–95
  • Guichard Y, Schmit J, Darne C, Gaté L, Goutet M, Rousset D, et al. 2012. Cytotoxiciy and genotoxicity of nanosized and microsized titanium oxide and iron oxide particles in Syrian hamster embryo cells. Ann Occup Hyg 56:631–44
  • Halliwell B, Aruoma OI. 1991. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281:9–19
  • Hussain S, Al-Nsour F, Rice AB, Marshburn J, Ji B, Zink JI, et al. 2012. Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 6:5820–9
  • Izu N, Shin W, Matsubara I, Murayama N. 2004. Development of resistive oxygen sensors based on cerium oxide thick film. J Electroceramics 13:703–6
  • Jasinski P, Suzuki T, Anderson HU. 2003. Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B 95:73–7
  • Karlsson HL, Cronholm P, Gustafsson J, Moller L. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–32
  • Karlsson HL, Gustafsson J, Cronholm P, Moller L. 2009. Size-dependent toxicity of metal oxide particles: a comparison between nano- and micrometer size. Toxicol Lett 188:112–18
  • Katschinsky DM, Boos K, Schindler SG, Fandrey J. 2000. Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem 275:21094–8
  • Kawanishi M, Ogo S, Ikemoto M, Totsuka Y, Ishino K, Wakabayashi K, Yagi T. 2013. Genotoxicity and reactive oxygen species production induced by magnetite nanoparticles in mammalian cells. J Toxicol Sci 38:503–11
  • Kirsch-Volders M, Vanhauwaert A, De Boeck M, Decordier I. 2002. Importance of detecting numerical versus structural chromosome aberrations. Mutat Res 504:137–48
  • Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, et al. 2003. Report from the in vitro micronucleus assay working group. Mutat Res 540:153–63
  • Könczöl M, Ebeling S, Goldenberg E, Treude F, Gminski R, Gieré R, et al. 2011. Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-κB. Chem Res Toxicol 24:1460–75
  • Kuchma MH, Komanski CB, Colon J, Teblum A, Masunov AE, Alvarado B, et al. 2010. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticules. Nanomedicine 6:738–44
  • Li Y, Dong X, Gao J, Hei D, Zhou X, Zhang H. 2009. A highly sensitive g-radiation dosimeter based on the CeO2 nanowires. Physica E 4:1550–3
  • Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. 2005. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentration. Environ Sci Technol 39:9370–6
  • Lin W, Huang YW, Zhou XD, Ma Y. 2006. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 25:451–7
  • Liu P, Ma L, Yin S, Hong F. 2008. Effect of Ce3+ on conformation and activity of superoxide dismutase. Biol Trace Elem Res 125:170–8
  • Long T, Saleh N, Tilton R, Lowry GV, Veronesi B. 2006. Titanium dioxide (P25) produces oxidative stress in immortalized brain microglia (BV2): implication of nanoparticle neurotoxicity. Environ Sci Technol 40:4346–52
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–75
  • Ma JY, Mercer R, Barger M, Schwegler-Berry D, Scabilloni J, Ma JK, Castranova V. 2012. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharm 262:255–64
  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. 2014. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–78
  • Mateuca R, Lombaert N, Aka PV, Decordier I, Kirsch-Volders M. 2006. Chromosomal changes: induction, detection methods and applicability in uman biomonitoring. Biochimie (Paris) 88:1515–31
  • Meitzner G, Gardea-Torresdey J, Parsons J, Scott SL, Deguns EW. 2005. The effect of cryogenic sample cooling on X-ray absorption spectra. Microchem J 81:61–8
  • Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, et al. 2008. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29:427–33
  • Nabavi M, Spalla O, Cabane B. 1993. Surface chemistry of nanometric ceria particles in aqueous dispersion. J Colloid Interface Sci 160:459–71
  • Nahm WK, Zhou L, Falanga V. 2002. Sustained ability for fibroblast outgrowth from stored neonatal foreskin: a model for studying mechanisms of fibroblast outgrowth. J Dermatol Sci 28:152–8
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–7
  • Newville M. 2001. IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8:322–4
  • Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, et al. 2007. The effect of nano- and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials 28:2946–58
  • Park B, Martin P, Harris C, Guest R, Whittingham A, Jenkinson P, Handley J. 2007. Initial in vitro screening approach to investigate the potential health and environmental hazards of Envirox™ – a nanoparticulate cerium oxide diesel fuel additive. Part Fibre Toxicol 4:12
  • Park EJ, Choi J, Park YK, Park K. 2008. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100
  • Patil S, Kuiry SC, Seal S, Vanfleet R. 2002. Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating. J Nanoparticle Res 4:433–8
  • Patil S, Sandberg A, Heckert E, Self W, Seal S. 2007. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–7
  • Pierscionek BK, Li Y, Yasseen AA, Colhoun LM, Schachar RA, Chen W. 2010. Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology 21:035102
  • Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, Schiffmann D. 2002. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in syrian hamster embryo fibroblasts. Environ Health Persp 110:797–800
  • Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, Baalousha M. 2010. Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7:50–60
  • Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL. 2005. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–95
  • Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, et al. 2007. Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol 7:2466–72
  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, et al. 2009. Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–914
  • Singh S, Kumar A, Karakoti A, Seal S, Self WT. 2010. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst 6:1813–20
  • Spalla O, Cabane B. 1993. Growth of colloidal aggregates through polymer bridging. Colloid Polym Sci 271:357–71
  • Stern, ST, McNeil, SE. 2008. Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21
  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM. 2006. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40
  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P. 2006. Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–45
  • Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, et al. 2012. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–22
  • Zhang H, He X, Zhang Z, Zhang P, Li Y, Ma Y, et al. 2011. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45:3725–30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.