868
Views
35
CrossRef citations to date
0
Altmetric
Original Article

Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study

, , , , , , , & show all
Pages 63-73 | Received 15 Aug 2014, Accepted 20 Jan 2015, Published online: 23 Feb 2015

References

  • Anjilvel S, Asgharian B. 1995. A multiple-path model of particle deposition in the rat lung. Fundam Appl Toxicol 28:41–50
  • Asgharian B, Price O, Miller F, Subramaniam R, Cassee FR, Freijer J, et al. 2009. Multiple-path particle dosimetry model (MPPD v 2.11): a model for human and rat airway particle dosimetry. In: Applied Research Associates (ARA), H. I. F. H. S., National Institute for Public Health and the Environment (RIVM), and Ministry of Housing, Spatial Planning and the Environment (ed.) V2.11 ed. Raleigh, North Carolina, USA: Applied Research Associates (ARA)
  • Baisch BL, Corson NM, Wade-Mercer P, Gelein R, Kennell AJ, Oberdorster G, Elder A. 2014. Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol 11:5–20
  • Bakand S, Hayes A, Dechsakulthorn F. 2012. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol 24:125–35
  • Barlow S, Chesson A, Collins JD, Flynn A, Hardy A, Jany K, et al. 2009. Use of the benchmark dose approach in risk assessment. EFSA J 1150:1–72
  • Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. 2012. Toxicity of silver nanoparticles – nanoparticle or silver ion? Toxicol Lett 208:286–92
  • Braakhuis HM, Gosens I, Krystek P, Boere J, Cassee FR, Fokkens P, et al. 2014a. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol 11:49
  • Braakhuis HM, Park MV, Gosens I, de Jong WH, Cassee FR. 2014b. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 11:18–42
  • Cassee FR, Muijser H, Duistermaat E, Freijer JJ, Geerse KB, Marijnissen JC, Arts JH. 2002. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model. Arch Toxicol 76:277–86
  • Cho WS, Duffin R, Thielbeer F, Bradley M, Megson IL, Macnee W, et al. 2012. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126:469–77
  • Du YK, Yang P, Mou ZG, Hua NP, Jiang L. 2006. Thermal decomposition behaviors of PVP coated on platinum nanoparticles. J Appl Polym Sci 99:23–6
  • Duffin R, Tran L, Brown D, Stone V, Donaldson K. 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–56
  • EFSA. 2009. Guidance of the Scientific Committe on a request from EFSA on the use of the benchmark dose approach in risk assessment. EFSA J 1150:1–72
  • Franek J. 2001. Temperature Dependence of Silver Oxide Formation. Minnesota: University of Minnesota
  • Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W. 2008. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 38:371–6
  • Geiser M, Kreyling WG. 2010. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2–18
  • Gerlofs-Nijland ME, Dormans JA, Bloemen HJ, Leseman DL, Boere JAF. 2007. Toxicity of coarse and fine particulate matter from sites with contrasting traffic profiles. Inhal Toxicol 19:1055–69
  • Gosens I, Mathijssen LE, Bokkers BG, Muijser H, Cassee FR. 2014. Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats. Nanotoxicology 8:643–53
  • Ho M, Wu KY, Chein HM, Chen LC, Cheng TJ. 2011. Pulmonary toxicity of inhaled nanoscale and fine zinc oxide particles: mass and surface area as an exposure metric. Inhal Toxicol 23:947–56
  • Horie M, Fukui H, Endoh S, Maru J, Miyauchi A, Shichiri M, et al. 2012. Comparison of acute oxidative stress on rat lung induced by nano and fine-scale, soluble and insoluble metal oxide particles: NiO and TiO2. Inhal Toxicol 24:391–400
  • Kent RD, Vikesland PJ. 2012. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy. Environ Sci Technol 46:6977–84
  • Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J. 2009. Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: different short- and long-term post-instillation results. Toxicology 264:110–18
  • Krystek P. 2012. A review on approaches to biodistribution studies about gold and silver engineered nanoparticles by inductively couples plasma mass spectrometry. Microchem J 105:39–43
  • Krystek P, Braakhuis HM, Park MVDZ, Jong WHD. 2013. Inductively Coupled Plasma-mass Spectrometry in biodistribution Studies of (engineered) Nanoparticles. Encyclopedia of Analytical Chemistry. Hoboken, NJ: John Wiley & Sons, Ltd
  • Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W. 2010. Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–27
  • Leo BF, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, et al. 2013. The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol 47:11232–40
  • Lubick N. 2008. Nanosilver toxicity: ions, nanoparticles – or both? Environ Sci Technol 42:8617
  • Ma-Hock L, Strauss V, Treumann S, Kuttler K, Wohlleben W, Hofmann T, et al. 2013. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol 10:23–42
  • Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, et al. 2012. Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–9
  • Muhlfeld C, Gehr P, Rothen-Rutishauser B. 2008. Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly 138:387–91
  • Nanotechnologies POE. 2014. Consumer products inventory. [Online] Available at: http://www.nanotechproject.org/cpi. Accessed on June 2014
  • Oberdorster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder AC. 2000. Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst 96:5–74; disc 75–86
  • Oberdorster G, Pott F. 1987. Extrapolation from rat studies with environmental tobacco smoke (ETS) to humans: comparison of particle mass deposition and of clearance behavior of ETS compounds. Toxicol Lett 35:107–12
  • Park EJ, Yi J, Kim Y, Choi K, Park K. 2010. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–8
  • Park MV, Annema W, Salvati A, Lesniak A, Elsaesser A, Barnes C, et al. 2009. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol Appl Pharmacol 240:108–16
  • Pauluhn J. 2009. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size. Toxicol Sci 109:152–67
  • Peniche C, Zaldivar D, Pazos M, Paz S, Bulay A, San Roman J. 1993. Study of the thermal degradation of poly(N-vinyl-2-pyrrolidone) by thermogravimetry-FTIR. J Appl Polym Sci 50:485–93
  • Phalen RF, Mendez LB, Oldham MJ. 2010. New developments in aerosol dosimetry. Inhal Toxicol 22:6–14
  • Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiriou GA. 2013. Toxicity of silver nanoparticles in macrophages. Small 9:2576–84
  • RIVM. 2014. PROAST: software for dose–response modeling and benchmark dose analysis. PROAST38. 9 edn. Bilthoven, The Netherlands.
  • Roursgaard M, Poulsen SS, Poulsen LK, Hammer M, Jensen KA, Utsunomiya S, et al. 2010. Time–response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound. Hum Exp Toxicol 29:915–33
  • SCENIHR. 2010. Basis for the definition of the term ‘nanomaterial'. Brussels, Belgium: European Commission
  • Schinwald A, Murphy FA, Jones A, Macnee W, Donaldson K. 2012. Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6:736–46
  • Slob W. 2002. Dose–response modeling of continuous endpoints. Toxicol Sci 66:298–312
  • Slob W. 2014a. Benchmark dose and the three Rs. Part I. Getting more information from the same number of animals. Crit Rev Toxicol 44:557–67
  • Slob W. 2014b. Benchmark dose and the three Rs. Part II. Consequences for study design and animal use. Crit Rev Toxicol 44:568–80
  • Stebounova LV, Guio E, Grassian VH. 2011. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopar Res 13:233–44
  • Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, et al. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328–33
  • van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L. 2009. Comparing fate and effects of three particles of different surface properties: nano-TiO(2), pigmentary TiO(2) and quartz. Toxicol Lett 186:152–9
  • Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao YP, et al. 2014. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10:385–98
  • Warheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM. 2007a. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 95:270–80
  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. 2007b. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104
  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. 2006. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91:227–36
  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, et al. 2009. Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–44
  • Yeh HC, Schum GM, Duggan MT. 1979. Anatomic models of the tracheobronchial and pulmonary regions of the rat. Anat Rec 195:483–92
  • Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, et al. 2008. Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247:102–11
  • Zook JM, Long SE, Cleveland D, Geronimo CL, Maccuspie RI. 2011. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV–visible absorbance. Anal Bioanal Chem 401:1993–2002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.