1,999
Views
171
CrossRef citations to date
0
Altmetric
Original Article

Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes)

, , , , &
Pages 436-444 | Received 18 Dec 2014, Accepted 10 Jul 2015, Published online: 10 Nov 2015

References

  • Arvidsson R, Molander S, Sandén BA. (2012). Particle flow analysis. J Ind Ecol 16:343–51
  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, et al. (2010). Review of fullerene toxicity and exposure – appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58:455–73
  • Aschberger K, Micheletti C, Sokull-Kluttgen B, Christensen FM. (2011). Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health – lessons learned from four case studies. Environ Int 37:1143–56
  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–200
  • Bornhöft NA, Nowack B, Hilty LM. (2013). Material flow modelling for environmental exposure assessment – a critical review of four approaches using the comparative implementation of an idealized example. In: Page B, Fleischer AG, Göbel J, Wohlgemuth V, eds. EnviroInfo (2013), Proceedings of the 27th Conference on Environmental Informatics, 379–88
  • Bundschuh M, Zubrod JP, Englert D, Seitz F, Rosenfeldt RR, Schulz R. (2011). Effects of nano-TiO2 in combination with ambient UV-irradiation on a leaf shredding amphipod. Chemosphere 85:1563–7
  • Clement L, Hurel C, Marmier N. (2013). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants-effects of size and crystalline structure. Chemosphere 90:1083–90
  • Dabrunz A, Duester L, Prasse C, Seitz F, Rosenfeldt R, Schilde C, et al. (2011). Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. Plos One 6:e20112
  • Dale AL, Casman EA, Lowry GV, Lead JR, Viparelli E, Baalousha M. (2015). Modeling nanomaterial environmental fate in aquatic systems. Environ Sci Technol 49:2587–93
  • Das P, Xenopoulos M, Metcalfe C. (2013). Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Bull Environ Contam Toxicol 91:76–82
  • Dasari TP, Pathakoti K, Hwang H-M. (2013). Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. J Environ Sci 25:882–8
  • ECHA. (2008a). Guidance on Information Requirements and Chemical Safety Assessment. Helsinki, Finland: European Chemicals Agency
  • ECHA. (2008b). Characterisation of dose [concentration]-response for environment. In: Guidance on Information Requirements and Chemical Safety Assessment. Helsinki, Finland: European Chemicals Agency (Chapter R.10)
  • Farré M, Pérez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barceló D. (2010). First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383:44–51
  • Garner KL, Suh S, Lenihan HS, Keller AA. (2015). Species sensitivity distributions for engineered nanomaterials. Environ Sci Technol 49:5753–9
  • Gondikas AP, Kammer Fvd, Reed RB, Wagner S, Ranville JF, Hofmann T. (2014). Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube Recreational Lake. Environ Sci Technol 48:5415–22
  • Gottschalk F, Kost E, Nowack B. (2013a). Engineered nanomaterials (ENM) in waters and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem 32:1278–87
  • Gottschalk F, Nowack B. (2013). A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk. Integr Environ Assess Manag 9:79–86
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–22
  • Gottschalk F, Sun TY, Nowack B. (2013b). Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300
  • Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, et al. (2012a). Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31
  • Handy RD, van den Brink N, Chappell M, Muhling M, Behra R, Dusinska M, et al. (2012b). Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 21:933–72
  • Holden PA, Klaessig F, Turco RF, Priester JH, Rico CM, Avila-Arias H, et al. (2014). Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant? Environ Sci Technol 48:10541–51
  • Ji J, Long ZF, Lin DH. (2011). Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–30
  • Johnston H, Pojana G, Zuin S, Jacobsen NR, Moller P, Loft S, et al. (2013). Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol 43:1–20
  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, et al. (2008). Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–9
  • Kahru A, Ivask A. (2013). Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46:823–33
  • Keller A, McFerran S, Lazareva A, Suh S. (2013). Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1–17
  • Kim B, Park CS, Murayama M, Hochella MF. (2010). Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509–14
  • Kim E, Kim S-H, Kim H-C, Lee S, Lee S, Jeong S. (2011). Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicol Environ Health Sci 3:1–6
  • Kim J, Lee S, Kim C-M, Seo J, Park Y, Kwon D, et al. (2014). Non-monotonic concentration–response relationship of TiO2 nanoparticles in freshwater cladocerans under environmentally relevant UV-A light. Ecotoxicol Environ Saf 101:240–7
  • Krug HF. (2014). Nanosafety research – are we on the right track? Angew Chem Int Ed 53:2–18
  • Liu HH, Cohen Y. (2014). Multimedia environmental distribution of engineered nanomaterials. Environ Sci Technol 48:3281–92
  • Ma H, Brennan A, Diamond SA. (2012). Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka. Environ Toxicol Chem 31:1621–9
  • Meesters JAJ, Koelmans AA, Quik JTK, Hendriks AJ, van de Meentt D. (2014). Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation. Environ Sci Technol 48:5726–36
  • Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF. (2012). Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem 31:115–21
  • Mueller NC, Nowack B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–53
  • Notter D, Mitrano DM, Nowack B. (2014). Are nanosized or dissolved metals more toxic? A meta-analysis. Environ Toxicol Chem 33:2733–9
  • O'Brien N, Cummins E. (2010). Nano-scale pollutants: fate in Irish surface and drinking water regulatory systems. Hum Ecol Risk Assess 16:847–72
  • Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML. (2006). Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–20
  • Petersen EJ, Henry TB, Zhao J, MacCuspie RI, Kirschling TL, Dobrovolskaia MA, et al. (2014). Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol 48:4226–46
  • Praetorius A, Arvidsson R, Molander S, Scheringer M. (2013). Facing complexity through informed simplifications: a research agenda for aquatic exposure assessment of nanoparticles. Environ Sci: Process Impacts 15:161–8
  • Praetorius A, Scheringer M, Hungerbuhler K. (2012). Development of environmental fate models for engineered nanoparticles – a case study of TiO2 nanoparticles in the Rhine river. Environ Sci Technol 46:6705–13
  • Sanchis J, Berrojalbiz N, Caballero G, Dachs J, Farré M, Barcelo D. (2012). Occurrence of Aerosol-bound fullerenes in the Mediterranean Sea atmosphere. Environ Sci Technol 46:1335–43
  • Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K. (2011). Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45:6136–44
  • Seda BC, Ke PC, Mount AS, Klaine SJ. (2012). Toxicity of aqueous C70-gallic acid suspension in Daphnia magna. Environ Toxicol Chem 31:215–20
  • Spohn P, Hirsch C, Hasler F, Bruinink A, Krug HF, Wick P. (2009). C-60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ Pollut 157:1134–9
  • Stone V, Hankin S, Aitken R, Aschberger K, Baun A, Christensen FM, et al. (2009). ENRHES Final Report: Engineered Nanoparticles – Review of Health and Environmental Safety (ENRHES). Edinburgh Napier University, Edinburg, UK: European Commission
  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B. (2014). Comprehensive modeling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76
  • von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ, et al. (2012). Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31:32–49
  • Zhu X, Chang Y, Chen Y. (2010). Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–15
  • Zhu X, Zhu L, Chen Y, Tian S. (2008). Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11:67–75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.