319
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108

, , , , , , , & show all
Pages 689-698 | Received 20 Jul 2015, Accepted 01 Oct 2015, Published online: 11 Nov 2015

References

  • Adenuga AA, Truong L, Tanguay RL, Remcho VT. 2013. Preparation of water soluble carbon nanotubes and assessment of their biological activity in embryonic zebrafish. Int J Biomed Nanosci Nanotechnol 3:38–51
  • Asharani P, Serina N, Nurmawati M, Wu Y, Gong Z, Valiyaveettil S. 2008. Impact of multi-walled carbon nanotubes on aquatic species. J Nanosci Nanotechnol 8:3603–9
  • Bisesi JH, Merten J, Liu K, Parks AN, Afrooz ARMN, Glenn JB, et al. 2014. Tracking and quantification of single-walled carbon nanotubes in fish using near infrared fluorescence. Environ Sci Technol 48:1973–83
  • Braun EI, Pantano P. 2014. The importance of an extensive elemental analysis of single-walled carbon nanotube soot. Carbon 77:912–19
  • Bugel SM, Tanguay RL, Planchart A. 2014. Zebrafish: a marvel of high-throughput biology for 21st century toxicology. Curr Environ Health Rep 1:341–52
  • Cheng J, Chan CM, Veca LM, Poon WL, Chan PK, Qu L, et al. 2009. Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol Appl Pharmacol 235:216–25
  • Cheng J, Flahaut E, Cheng SH. 2007. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26:708–16
  • Cheng JP, Cheng SH. 2012. Influence of carbon nanotube length on toxicity to zebrafish embryos. Int J Nanomedicine 7:3731–9
  • Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. 2004. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126:15638–9
  • Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman RB. 2006. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Nat Acad Sci USA 103:18882–6
  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. 2013. Carbon nanotubes: present and future commercial applications. Science 339:535–9
  • Fako VE, Furgeson DY. 2009. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliv Rev 61:478–86
  • Filho JDS, Matsubara EY, Franchi LP, Martins IP, Rivera LMR, Rosolen JM, Grisolia CK. 2014. Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model. Environ Res 134:9–16
  • Firme 3rd CP, Bandaru PR. 2010. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 6:245–56
  • Giannaccini M, Cuschieri A, Dente L, Raffa V. 2014. Non-mammalian vertebrate embryos as models in nanomedicine. Nanomedicine 10:703–19
  • Gilbertson LM, Melnikov F, Wehmas LC, Anastas PT, Tanguay RL, Zimmerman JB. 2015. Toward safer multi-walled carbon nanotube design: establishing a statistical model that relates surface charge and embryonic zebrafish mortality. Nanotoxicology. DOI:10.3109/17435390.2014.996193
  • Hyung H, Fortner JD, Hughes JB, Kim J-H. 2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–84
  • Itkis ME, Perea DE, Niyogi S, Rickard SM, Hamon MA, Hu H, et al. 2003. Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett 3:309–14
  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, et al. 2013. Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154
  • Kennedy AJ, Gunter JC, Chappell MA, Goss JD, Hull MS, Kirgan RA, Steevens JA. 2009. Influence of nanotube preparation in Aquatic Bioassays. Environ Toxicol Chem 28:1930–8
  • Kennedy AJ, Hull MS, Steevens JA, Dontsova KM, Chappell MA, Gunter JC, Weiss CA. 2008. Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27:1932–41
  • Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. 2011. Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta - General Subjects 1810:361–73
  • Lin S, Zhao Y, Nel AE, Lin S. 2013. Zebrafish: an in vivo model for nano EHS studies. Small 9:1608–18
  • Maes HM, Stibany F, Giefers S, Daniels B, Deutschmann B, Baumgartner W, Schaffer A. 2014. Accumulation and distribution of multiwalled carbon nanotubes in zebrafish (Danio rerio). Environ Sci Technol 48:12256–64
  • Meng L, Jiang A, Chen R, Li C-Z, Wang L, Qu Y, et al. 2013. Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells. Toxicology 313:49–58
  • Murali VS, Wang R, Mikoryak CA, Pantano P, Draper R. 2015. Rapid detection of polyethylene glycol sonolysis upon functionalization of carbon nanomaterials. Exp Biol Med (Maywood) 240:1147–51
  • Pan H, Lin Y-J, Li M-W, Chuang H-N, Chou C-C. 2011. Aquatic toxicity assessment of single-walled carbon nanotubes using zebrafish embryos. J Phys Conf Ser 304:012026. DOI:10.1088/1742-6596/304/1/012026
  • Pantano P, Draper RK, Mikoryak C, Wang R. 2012. Electrophoretic methods to quantify carbon nanotubes in biological cells. In: D'Souza F, Kadish KM, eds. Handbook of Carbon Nanomaterials. Singapore: World Scientific Publishers, 84–107
  • Petersen EJ, Zhang L, Mattison NT, O’Carroll DM, Whelton AJ, Uddin N, et al. 2011. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45:9837–56
  • Rizzo LY, Golombek SK, Mertens ME, Pan Y, Laaf D, Broda J, et al. 2013. In vivo nanotoxicity testing using the zebrafish embryo assay. J Mater Chem B Mater Biol Med 1:3918–25
  • Scown TM, van Aerle R, Tyler CR. 2010. Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–70
  • Taurozzi JS, Hackley VA, Wiesner MR. 2011. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment-issues and recommendations. Nanotoxicology 5:711–29
  • Truong L, Harper S, Tanguay R. 2011. Evaluation of embryotoxicity using the zebrafish model. Drug Safety Evaluation 691:271–9
  • Wang P, Nie X, Wang Y, Li Y, Ge C, Zhang L, et al. 2013a. Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-β/Smad signaling pathway. Small 9:3799–811
  • Wang R, Hughes T, Beck S, Vakil S, Li S, Pantano P, Draper RK. 2013b. Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing. Nanotoxicology 7:1272–81
  • Wang R, Mikoryak C, Chen E, Li S, Pantano P, Draper RK. 2009. Gel electrophoresis method to measure the concentration of single-walled carbon nanotubes extracted from biological tissue. Anal Chem 81:2944–52
  • Wang R, Mikoryak C, Li S, Bushdiecker II D, Musselman IH, et al. 2011. Cytotoxicity screening of single-walled carbon nanotubes: detection and removal of cytotoxic contaminants from carboxylated carbon nanotubes. Mol Pharm 8:1351–61
  • Wang X, Xia T, Duch MC, Ji Z, Zhang H, Li R, et al. 2012. Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett 12:3050–61
  • Zhao X, Liu R. 2012. Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ Int 40:244–55

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.