569
Views
75
CrossRef citations to date
0
Altmetric
Original Article

In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles

, , , , , & show all
Pages 629-639 | Received 15 Jul 2015, Accepted 09 Oct 2015, Published online: 11 Nov 2015

References

  • Ahamed M, Akhtar MJ, Alhadlaq HA, Alrokayan SA. 2015. Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine (Lond) 10:2365–77
  • Beck BD, Brain JD, Bohannon DE. 1982. An in vivo hamster bioassay to assess the toxicity of particulates for the lungs. Toxicol Appl Pharmacol 66:9–29
  • Bello D, Martin J, Santeufemio C, Sun Q, Lee Bunker K, Shafer M, Demokritou P. 2013. Physicochemical and morphological characterisation of nanoparticles from photocopiers: implications for environmental health. Nanotoxicology 7:989–1003
  • Bourc’his D, Bestor TH. 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–9
  • Chia SL, Tay CY, Setyawati MI, Leong DT. 2015. Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles. Small 11:702–12
  • Choi AO, Brown SE, Szyf M, Maysinger D. 2008. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med (Berl) 86:291–302
  • Cohen JM, Derk R, Wang L, Godleski J, Kobzik L, Brain J, Demokritou P. 2014a. Tracking translocation of industrially relevant engineered nanomaterials (ENMs) across alveolar epithelial monolayers in vitro. Nanotoxicology 8:216–25
  • Cohen JM, Teeguarden JG, Demokritou P. 2014b. An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part Fibre Toxicol 11:20
  • DeLoid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G, et al. 2014. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun 5:3514
  • Demokritou P, Gass S, Pyrgiotakis G, Cohen JM, Goldsmith W, McKinney W, et al. 2013. An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO2 inhalation exposures. Nanotoxicology 7:1338–50
  • Fragou D, Fragou A, Kouidou S, Njau S, Kovatsi L. 2011. Epigenetic mechanisms in metal toxicity. Toxicol Mech Methods 21:343–52
  • Gong C, Tao G, Yang L, Liu J, Liu Q, Zhuang Z. 2010. SiO(2) nanoparticles induce global genomic hypomethylation in HaCaT cells. Biochem Biophys Res Commun 397:397–400
  • Halappanavar S, Jackson P, Williams A, Jensen KA, Hougaard KS, Vogel U, et al. 2011. Pulmonary response to surface-coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades, and changes in microRNAs: a toxicogenomic study. Environ Mol Mutagen 52:425–39
  • Hedges DJ, Deininger PL. 2007. Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 616:46–59
  • Hiraiwa K, van Eeden SF. 2013. Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants. Mediators Inflamm 2013:619523
  • James SJ, Melnyk S, Jernigan S, Pavliv O, Trusty T, Lehman S, et al. 2010. A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism. Am J Med Genet B Neuropsychiatr Genet 153B:1209–20
  • Jeong J, Kim J, Seok SH, Cho WS. 2015. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles. Arch Toxicol. [Epub ahead of print]. doi: 10.1007/s00204-015-1493-x
  • Jones PA. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–92
  • Karlsson HL, Gustafsson J, Cronholm P, Möller L. 2009. Size-dependent toxicity of metal oxide particles – a comparison between nano- and micrometer size. Toxicol Lett 188:112–18
  • Kelly TK, De Carvalho DD, Jones PA. 2010. Epigenetic modifications as therapeutic targets. Nat Biotechnol 28:1069–78
  • Knust J, Ochs M, Gundersen HJ, Nyengaard JR. 2009. Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs. Anat Rec (Hoboken) 292:113–22
  • Koturbash I, Beland FA, Pogribny IP. 2011a. Role of epigenetic events in chemical carcinogenesis – a justification for incorporating epigenetic evaluations in cancer risk assessment. Toxicol Mech Methods 21:289–97
  • Koturbash I, Scherhag A, Sorrentino J, Sexton K, Bodnar W, Tryndyak V, et al. 2011b. Epigenetic alterations in liver of C57BL/6J mice after short-term inhalational exposure to 1,3-butadiene. Environ Health Perspect 119:635–40
  • Koturbash I, Simpson NE, Beland FA, Pogribny IP. 2012. Alterations in histone H4 lysine 20 methylation: implications for cancer detection and prevention. Antioxid Redox Signal 17:365–74
  • Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, et al. 2011. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8:9
  • Landsiedel R, Sauer UG, Ma-Hock L, Schnekenburger J, Wiemann M. 2014. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies. Nanomedicine (Lond) 9:2557–85
  • Lu X, Miousse IR, Pirela SV, Melnyk S, Koturbash I, Demokritou P. 2015. Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology 4:1–11
  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. 2008. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–70
  • Miousse IR, Koturbash I. 2015. The fine LINE: methylation drawing the cancer landscape. Biomed Res Int 2015:131547
  • Miousse IR, Chalbot MC, Aykin-Burns N, Wang X, Basnakian A, Kavouras IG, Koturbash I. 2014. Epigenetic alterations induced by ambient particulate matter in mouse macrophages. Environ Mol Mutagen 55:428–35
  • Miousse IR, Chalbot MC, Lumen A, Ferguson A, Kavouras I, Koturbash I. 2015a. Response of transposable elements to environmental stressors. Mutat Res Rev Mutat Res 765:19–39
  • Miousse IR, Chalbot MG, Pathak R, Lu X, Nzabarushimana E, Krager K, et al. 2015b. In vitro toxicity and epigenotoxicity of different types of ambient particulate matter. Toxicol Sci pii: kfv200
  • Mircescu MM, Lipuma L, van Rooijen N, Pamer EG, Hohl TM. 2009. Essential role for neutrophils but not alveolar macrophages at early time points following Aspergillus fumigatus infection. J Infect Dis 200:647–56 [CrossRef][10.1086/600380]
  • Pal AK, Aalaei I, Gadde S, Gaines P, Schmidt D, Demokritou P, et al. 2014. High resolution characterization of engineered nanomaterial dispersions in complex media using tunable resistive pulse sensing technology. ACS Nano 8:9003–15
  • Pal AK, Bello D, Cohen J, Demokritou P. 2015. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials. Nanotoxicology 12:1–15
  • Pirela SV, Lu X, Miousse IR, Sisler JD, Qian Y, Gao N, et al. 2015a. Effects of laser printer-emitted engineered nanoparticles on murine biological responses following acute exposure by intratracheal instillation: case study of toxicological implications from nanomaterials released across their life cycle. NanoImpact, in review
  • Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, et al. 2015b. Effects of laser printer-emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a comprehensive in vitro analysis in human small airway epithelial cells, macrophages, and lymphoblasts. Environ Health Perspect. [Epub ahead of print]. doi:10.1289/ehp.1409582
  • Pirela SV, Sotiriou GA, Bello D, Shafer M, Bunker KL, Castranova V, et al. 2015c. Consumer exposures to laser printer-emitted engineered nanoparticles: a case study of life-cycle implications from nano-enabled products. Nanotoxicology 9:760–8
  • Pirela SV, Pyrgiotakis G, Bello D, Thomas T, Castranova V, Demokritou P. 2014. Development and characterization of an exposure platform suitable for physico-chemical, morphological and toxicological characterization of printer-emitted particles (PEPs). Inhal Toxicol 26:400–8
  • Pyrgiotakis G, McDevitt J, Gao Y, Branco A, Eleftheriadou M, Lemos B, et al. 2014. Mycobacteria inactivation using Engineered Water Nanostructures (EWNS). Nanomedicine 10:1175–83
  • Pyrgiotakis G, Vasanthakumar A, Gao Y, Eleftheriadou M, Toledo E, DeAraujo A, et al. 2015. Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS). Environ Sci Technol 49:3737–45
  • Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–8
  • Setyawati MI, Tay CY, Chia SL, Goh SL, Fang W, Neo MJ, et al. 2013. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat Commun 4:1673
  • Setyawati MI, Tay CY, Docter D, Stauber RH, Leong DT. 2015a. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem Soc Rev. [Epub ahead of print]. doi: 10.1039/c5cs00499c
  • Setyawati MI, Tay CY, Leong DT. 2015b. Mechanistic investigation of the biological effects of SiO2, TiO2, and ZnO nanoparticles on intestinal cells. Small 11:3458–68
  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. 2012. Toxicity of nanomaterials. Chem Soc Rev 41:2323–43
  • Sisler JD, Pirela SV, Friend S, Farcas M, Schwegler-Berry D, Shvedova A, et al. 2014. Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model. Nanotoxicology 9:769–79
  • Tay CY, Setyawati MI, Xie J, Parak WJ, Leong DT. 2014. Back to basics: exploiting the innate physico-chemical characteristics of nanomaterials for biomedical applications. Adv Funct Mater 24:5936–55
  • Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P. 2014. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 8:2118–33
  • Zaynagetdinov R, Sherrill TP, Kendall PL, Segal BH, Weller KP, Tighe RM, et al. 2013. Identification of myeloid cell subsets in murine lungs using flow cytometry. Am J Respir Cell Mol Biol 49:180–9
  • Zhou EH, Watson C, Pizzo R, Cohen J, Dang Q, Ferreira de Barros PM, et al. 2014. Assessing the impact of engineered nanoparticles on wound healing using a novel in vitro bioassay. Nanomedicine (Lond) 9:2803–15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.