2,172
Views
27
CrossRef citations to date
0
Altmetric
Original Article

Simple in vitro models can predict pulmonary toxicity of silver nanoparticles

, , , , &
Pages 770-779 | Received 24 Jun 2015, Accepted 23 Nov 2015, Published online: 26 Jan 2016

References

  • Ahlberg S, Antonopulos A, Diendorf J, Dringen R, Epple M, Flock R, et al. 2014. PVP-coated, negatively charged silver nanoparticles: a multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein J Nanotechnol 5:1944–65
  • Alfaro-Moreno E, Nawrot TS, Vanaudenaerde BM, Hoylaerts MF, Vanoirbeek JA, Nemery B, Hoet PH. 2008. Co-cultures of multiple cell types mimic pulmonary cell communication in response to urban PM10. Eur Respir J 32:1184–94
  • Arts JH, Muijser H, Duistermaat E, Junker K, Kuper CF. 2007. Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food Chem Toxicol 45:1856–67
  • Barlow S, Chesson A, Collins JD, Flynn A, Hardy A, Jany K, et al. 2009. Use of the benchmark dose approach in risk assessment. EFSA J 1150:1–72
  • Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. 2012. Toxicity of silver nanoparticles – nanoparticle or silver ion? Toxicol Lett 208:286–92
  • Braakhuis HM, Cassee FR, Fokkens PH, De La Fonteyne LJ, Oomen AG, Krystek P, et al. 2015a. Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study. Nanotoxicology 4:1–11
  • Braakhuis HM, Dilger M, Muelhopt S, Park MVDZ, Paur HR, Weiss C, Diabate S. 2015b. Exposure of an in vitro lung model to silver nanoparticles at the air–liquid interface. in preparation
  • Braakhuis HM, Gosens I, Krystek P, Boere J, Cassee Fr, Fokkens P, et al. 2014. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol 11:84–16
  • Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MV, Bellmann S, et al. 2015c. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol 89:1469–95
  • Brandenberger C, Muhlfeld C, Ali Z, Lenz AG, Schmid O, Parak WJ, et al. 2010. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6:1669–78
  • Chowdhury F, Howat Wj, Phillips Gj, Lackie PM. 2010. Interactions between endothelial cells and epithelial cells in a combined cell model of airway mucosa: effects on tight junction permeability. Exp Lung Res 36:1–11
  • Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. 1982. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 126:332–7
  • Delmaar CJ, Peijnenburg WJ, Oomen AG, Chen J, De Jong WH, Sips AJ, et al. 2015. A practical approach to determine dose metrics for nanomaterials. Environ Toxicol Chem 34:1015–22
  • Donaldson K, Schinwald A, Murphy F, Cho WS, Duffin R, Tran L, Poland C. 2013. The biologically effective dose in inhalation nanotoxicology. Acc Chem Res 46:723–32
  • Dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA. 2011. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One 6:e24438:1–10
  • Duffin R, Tran L, Brown D, Stone V, Donaldson K. 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–56
  • EFSA 2009. Guidance of the Scientific Committe on a request from EFSA on the use of the benchmark dose approach in risk assessment. EFSA J 1150:1–72
  • Frieke Kuper C, Grollers-Mulderij M, Maarschalkerweerd T, Meulendijks NM, Reus A, Van Acker F, et al. 2015. Toxicity assessment of aggregated/agglomerated cerium oxide nanoparticles in an in vitro 3D airway model: the influence of mucociliary clearance. Toxicol in Vitro 29:389–97
  • George I, Vranic S, Boland S, Courtois A, Baeza-Squiban A. 2015. Development of an in vitro model of human bronchial epithelial barrier to study nanoparticle translocation. Toxicol in Vitro 29:51–8
  • Gerlofs-Nijland ME, Dormans JA, Bloemen HJ, Leseman DL, Boere JAF. 2007. Toxicity of coarse and fine particulate matter from sites with contrasting traffic profiles. Inhal Toxicol 19:1055–69
  • Geys J, Coenegrachts L, Vercammen J, Engelborghs Y, Nemmar A, Nemery B, Hoet PH. 2006. In vitro study of the pulmonary translocation of nanoparticles: a preliminary study. Toxicol Lett 160:218–26
  • Gosens I, Mathijssen LE, Bokkers BG, Muijser H, Cassee FR. 2014. Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats. Nanotoxicology 8:643–53
  • Grassian VH, O'shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. 2007. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115:397–402
  • Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Koller M. 2011. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7:347–54
  • Han X, Corson N, Wade-Mercer P, Gelein R, Jiang J, Sahu M, et al. 2012. Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297:1–9
  • Hermanns MI, Unger RE, Kehe K, Peters K, Kirkpatrick CJ. 2004. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. Lab Invest 84:736–52
  • Ho M, Wu KY, Chein HM, Chen LC, Cheng TJ. 2011. Pulmonary toxicity of inhaled nanoscale and fine zinc oxide particles: mass and surface area as an exposure metric. Inhal Toxicol 23:947–56
  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. 2010. Reconstituting organ-level lung functions on a chip. Science 328:1662–8
  • Huk A, Izak-Nau E, Reidy B, Boyles M, Duschl A, Lynch I, Dusinska M. 2014. Is the toxic potential of nanosilver dependent on its size? Part Fibre Toxicol 11:65–16
  • Kasper J, Hermanns MI, Bantz C, Maskos M, Stauber R, Pohl C, et al. 2011. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures. Part Fibre Toxicol 8:6–16
  • Kennedy DC, Orts-Gil G, Lai CH, Muller L, Haase A, Luch A, Seeberger PH. 2014. Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. J Nanobiotechnology 12:1–59
  • Kent RD, Vikesland PJ. 2012. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy. Environ Sci Technol 46:6977–84
  • Klein SG, Hennen J, Serchi T, Blomeke B, Gutleb AC. 2011. Potential of coculture in vitro models to study inflammatory and sensitizing effects of particles on the lung. Toxicol in Vitro 25:1516–34
  • Kopf M, Schneider C, Nobs SP. 2015. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16:36–44
  • Lehmann AD, Daum N, Bur M, Lehr CM, Gehr P, Rothen-Rutishauser BM. 2011. An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur J Pharm Biopharm 77:398–406
  • Leo BF, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, et al. 2013. The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol 47:11232–40
  • Liu W, Wu Y, Wang CLIHC, Wang T, Liao CY, Cui L, et al. 2010. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4:319–30
  • Ma-Hock L, Strauss V, Treumann S, Kuttler K, Wohlleben W, Hofmann T, et al. 2013. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol 10:1–23
  • Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, et al. 2012. Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–9
  • Madlova M, Jones SA, Zwerschke IMAY, Hider RC, Forbes B. 2009. Poly(vinyl alcohol) nanoparticle stability in biological media and uptake in respiratory epithelial cell layers in vitro. Eur J Pharm Biopharm 72:437–43
  • Maynard AD, Kuempel ED. 2005. Airborne nanostructured particles and occupational health. J Nanoparticle Res 7:587–614
  • Monteiller C, Tran L, Macnee W, Faux S, Jones A, Miller B, Donaldson K. 2007. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–15
  • Muller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B. 2010. Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface 7:S27–40
  • Nanotechnologies. 2014. Consumer products inventory [Online]. Available at: http://www.nanotechproject.org/cpi. Accessed on June 2014
  • Ochs M, Nyengaard Jr, Jung A, Knudsen L, Voigt M, Wahlers T, et al. 2004. The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–4
  • Park MV, Annema W, Salvati A, Lesniak A, Elsaesser A, Barnes C, et al. 2009. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol Appl Pharmacol 240:108–16
  • Park MV, Neigh AM, Vermeulen JP, De La Fonteyne LJ, Verharen HW, Briede JJ, et al. 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–17
  • Pauluhn J. 2010. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113:226–42
  • Peretyazhko TS, Zhang Q, Colvin VL. 2014. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48:11954–61
  • Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiriou GA. 2013. Toxicity of silver nanoparticles in macrophages. Small 9:2576–84
  • Raemy DO, Limbach LK, Rothen-Rutishauser B, Grass RN, Gehr P, Birbaum K, et al. 2011. Cerium oxide nanoparticle uptake kinetics from the gas-phase into lung cells in vitro is transport limited. Eur J Pharm Biopharm 77:368–75
  • RIVM 2014. PROAST: software for dose-response modeling and benchmark dose analysis. PROAST38.9 ed. Bilthoven, the Netherlands
  • Rothen-Rutishauser B, Mueller L, Blank F, Brandenberger C, Muehlfeld C, Gehr P. 2008. A newly developed in vitro model of the human epithelial airway barrier to study the toxic potential of nanoparticles. ALTEX 25:191–6
  • Sayes CM, Reed KL, Glover KP, Swain KA, Ostraat ML, Donner EM, Warheit DB. 2010. Changing the dose metric for inhalation toxicity studies: short-term study in rats with engineered aerosolized amorphous silica nanoparticles. Inhal Toxicol 22:348–54
  • Schinwald A, Chernova T, Donaldson K. 2012. Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 9:47–15
  • Slob W. 2002. Dose-response modeling of continuous endpoints. Toxicol Sci 66:298–312
  • Stebounova LV, Guio E, Grassian VH. 2011. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopar Res 13:1–12
  • Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, et al. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328–33
  • Stone V, Barlow PG, Hutchison GR, Brown DM. 2007. Proinflammatory effects of particles on macrophages and epithelial cells. In: Donaldson K, Borm P, eds. Particle Toxicology. Boca Raton, FL: CRC Press, Taylor & Francis Group, 183–96
  • Stopford W, Turner J, Cappellini D, Brock T. 2003. Bioaccessibility testing of cobalt compounds. J Environ Monit 5:675–80
  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, et al. 2009. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452–61
  • Sung JH, Ji JH, Song KS, Lee JH, Choi KH, Lee SH, Yu IJ. 2011. Acute inhalation toxicity of silver nanoparticles. Toxicol Ind Health 27:149–54
  • Wang L, Zhang T, Li P, Huang W, Tang J, Wang P, et al. 2015. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano 9:6532–47
  • Wang P, Nie X, Wang Y, Li YGEC, Zhang L, Wang L, et al. 2013. Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-beta/Smad signaling pathway. Small 9:3799–811
  • Wang X, Ji Z, Chang Ch, Zhang H, Wang M, Liao YP, et al. 2014. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10:385–98
  • Wang Z, Chen J, Li X, Shao J, Peijnenburg WJ. 2012. Aquatic toxicity of nanosilver colloids to different trophic organisms: contributions of particles and free silver ion. Environ Toxicol Chem 31:2408–13
  • Warheit DB, Webb TR, Reed Kl, Frerichs S, Sayes CM. 2007. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104
  • Westphalen K, Gusarova GA, Islam MN, Subramanian M, Cohen TS, Prince AS, Bhattacharya J. 2014. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506:503–6
  • Zhang T, Wang L, Chen Q, Chen C. 2014. Cytotoxic potential of silver nanoparticles. Yonsei Med J 55:283–91
  • Zook JM, Long SE, Cleveland D, Geronimo CL, Maccuspie RI. 2011. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem 401:1993–2002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.