706
Views
50
CrossRef citations to date
0
Altmetric
Original Article

Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages

, , , , , , , , & show all
Pages 981-991 | Received 29 Jul 2015, Accepted 15 Feb 2016, Published online: 30 Mar 2016

References

  • Ashby J, Pan S, Zhong W. 2014. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Appl Mater Interfaces 6:15412–19.
  • Bakand S, Hayes A, Dechsakulthorn F. 2012. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol 24:125–35.
  • Bourdon JA, Saber AT, Jacobsen NR, Jensen KA, Madsen AM, Lamson JS, et al. 2012. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part Fibre Toxicol 9:5
  • Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, et al. 2004. Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286:L344–53.
  • Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH. 2010. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 5:e8668
  • Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF. 2011. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6:39–44.
  • Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF. 2009. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101
  • Donaldson K, Duffin R, Langrish JP, Miller MR, Mills NL, Poland CA, et al. 2013. Nanoparticles and the cardiovascular system: a critical review. Nanomedicine (Lond) 8:403–23.
  • Foucaud L, Wilson MR, Brown DM, Stone V. 2007. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174:1–9.
  • Gasser M, Wick P, Clift MJ, Blank F, Diener L, Yan B, et al. 2012. Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Part Fibre Toxicol 9:17.
  • Geiser M. 2010. Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv 23:207–17.
  • Gessner A, Waicz R, Lieske A, Paulke B, Mader K, Muller RH. 2000. Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm 196:245–9.
  • Herzog E, Byrne HJ, Davoren M, Casey A, Duschl A, Oostingh GJ. 2009. Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicol Appl Pharmacol 236:276–81.
  • James SA, Feltis BN, De Jonge MD, Sridhar M, Kimpton JA, Altissimo M, et al. 2013. Quantification of ZnO nanoparticle uptake, distribution, and dissolution within individual human macrophages. ACS Nano 7:10621–35.
  • Kendall M, Ding P, Kendall K. 2011. Particle and nanoparticle interactions with fibrinogen: the importance of aggregation in nanotoxicology. Nanotoxicology 5:55–65.
  • Kendall M, Guntern J, Lockyer NP, Jones FH, Hutton BM, Lippmann M, Tetley TD. 2004. Urban PM2.5 surface chemistry and interactions with bronchoalveolar lavage fluid. Inhal Toxicol 16:115–29.
  • Kermanizadeh A, Balharry D, Wallin H, Loft S, Moller P. 2015. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Crit Rev Toxicol 45:837–72.
  • Kondej D, Sosnowski TR. 2013. Alteration of biophysical activity of pulmonary surfactant by aluminosilicate nanoparticles. Inhal Toxicol 25:77–83.
  • Kreyling WG, Fertsch-Gapp S, Schaffler M, Johnston BD, Haberl N, Pfeiffer C, et al. 2014a. In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics. Beilstein J Nanotechnol 5:1699–711.
  • Kreyling WG, Hirn S, Moller W, Schleh C, Wenk A, Celik G, et al. 2014b. Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano 8:222–33.
  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, et al. 2002. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–30.
  • Laden F, Neas LM, Dockery DW, Schwartz J. 2000. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect 108:941–7.
  • Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A. 2012. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–57.
  • Lewis JA, Rao KM, Castranova V, Vallyathan V, Dennis WE, Knechtges PL. 2007. Proteomic analysis of bronchoalveolar lavage fluid: effect of acute exposure to diesel exhaust particles in rats. Environ Health Perspect 115:756–63.
  • Lucking AJ, Lundback M, Mills NL, Faratian D, Barath SL, Pourazar J, et al. 2008. Diesel exhaust inhalation increases thrombus formation in man. Eur Heart J 29:3043–51.
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–70.
  • Ma J, Mercer RR, Barger M, Schwegler-Berry D, Cohen JM, Demokritou P, Castranova V. 2015. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses. Toxicol Appl Pharmacol 288:63–73.
  • Mangge H, Becker K, Fuchs D, Gostner JM. 2014. Antioxidants, inflammation and cardiovascular disease. World J Cardiol 6:462–77.
  • Miller MR. 2014. The role of oxidative stress in the cardiovascular actions of particulate air pollution. Biochem Soc Trans 42:1006–11.
  • Miller MR, Mclean SG, Duffin R, Lawal AO, Araujo JA, Shaw CA, et al. 2013. Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice. Part Fibre Toxicol 10:61.
  • Miller MR, Shaw CA, Langrish JP. 2012. From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol 8:577–602.
  • Mills NL, Amin N, Robinson SD, Anand A, Davies J, Patel D, et al. 2006. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med 173:426–31.
  • Mills NL, Donaldson K, Hadoke PW, Boon NA, Macnee W, Cassee FR, et al. 2009. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med 6:36–44.
  • Mills NL, Tornqvist H, Gonzalez MC, Vink E, Robinson SD, Soderberg S, et al. 2007. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med 357:1075–82.
  • Minchin RF, Martin DJ. 2010. Nanoparticles for molecular imaging-an overview. Endocrinology 151:474–81.
  • Monopoli MP, Aberg C, Salvati A, Dawson KA. 2012. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–86.
  • Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA. 2011. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–34.
  • Monteiller C, Tran L, Macnee W, Faux S, Jones A, Miller B, Donaldson K. 2007. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–15.
  • Mortimer GM, Butcher NJ, Musumeci AW, Deng ZJ, Martin DJ, Minchin RF. 2014. Cryptic epitopes of albumin determine mononuclear phagocyte system clearance of nanomaterials. ACS Nano 8:3357–66.
  • Mustafic H, Jabre P, Caussin C, Murad MH, Escolano S, Tafflet M, et al. 2012. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA 307:713–21.
  • Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, et al. 2002. Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–14.
  • Park MV, Neigh AM, Vermeulen JP, De La Fonteyne LJ, Verharen HW, Briede JJ, et al. 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–17.
  • Perez-Gil J. 2008. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim Biophys Acta 1778:1676–95.
  • Poulsen SS, Saber AT, Williams A, Andersen O, Kobler C, Atluri R, et al. 2015. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284:16–32.
  • Robertson S, Gray GA, Duffin R, Mclean SG, Shaw CA, Hadoke PW, et al. 2012. Diesel exhaust particulate induces pulmonary and systemic inflammation in rats without impairing endothelial function ex vivo or in vivo. Part Fibre Toxicol 9:9.
  • Roos-Engstrand E, Pourazar J, Behndig AF, Bucht A, Blomberg A. 2011. Expansion of CD4 + CD25+ helper T cells without regulatory function in smoking and COPD. Respir Res 12:74. doi: 10.1186/1465-9921-12-74.
  • Ruge CA, Schaefer UF, Herrmann J, Kirch J, Canadas O, Echaide M, et al. 2012. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLoS One 7:e40775
  • Saber AT, Jacobsen NR, Jackson P, Poulsen SS, Kyjovska ZO, Halappanavar S, et al. 2014. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:517–31.
  • Saptarshi SR, Duschl A, Lopata AL. 2013. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology 11:26. doi: 10.1186/1477-3155-11-26.
  • Schulze C, Schaefer UF, Ruge CA, Wohlleben W, Lehr CM. 2011. Interaction of metal oxide nanoparticles with lung surfactant protein A. Eur J Pharm Biopharm 77:376–83.
  • Schwarze PE, Totlandsdal AI, Lag M, Refsnes M, Holme JA, Ovrevik J. 2013. Inflammation-related effects of diesel engine exhaust particles: studies on lung cells in vitro. Biomed Res Int 2013:685142.
  • Seaton BA, Crouch EC, Mccormack FX, Head JF, Hartshorn KL, Mendelsohn R. 2010. Review: structural determinants of pattern recognition by lung collectins. Innate Immun 16:143–50.
  • Shaw CA, Robertson S, Miller MR, Duffin R, Tabor CM, Donaldson K, et al. 2011. Diesel exhaust particulate-exposed macrophages cause marked endothelial cell activation. Am J Respir Cell Mol Biol 44:840–51.
  • Thorley AJ, Tetley TD. 2013. New perspectives in nanomedicine. Pharmacol Ther 140:176–85.
  • Vranic S, Garcia-Verdugo I, Darnis C, Sallenave JM, Boggetto N, Marano F, et al. 2013. Internalization of SiO(2) nanoparticles by alveolar macrophages and lung epithelial cells and its modulation by the lung surfactant substitute Curosurf. Environ Sci Pollut Res Int 20:2761–70.
  • Wiebert P, Sanchez-Crespo A, Falk R, Philipson K, Lundin A, Larsson S, et al. 2006. No significant translocation of inhaled 35-nm carbon particles to the circulation in humans. Inhal Toxicol 18:741–7.
  • Zhang W, Zhang Q, Wang F, Yuan L, Xu Z, Jiang F, Liu Y. 2014. Comparison of interactions between human serum albumin and silver nanoparticles of different sizes using spectroscopic methods. Luminescence 30:397–404.
  • Zheng M, Cass GR, Ke L, Wang F, Schauer JJ, Edgerton ES, Russell AG. 2007. Source apportionment of daily fine particulate matter at Jefferson Street, Atlanta, GA, during summer and winter. J Air Waste Manag Assoc 57:228–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.