977
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Ectopic osteogenic tissue formation by MC3T3-E1 cell-laden chitosan/hydroxyapatite composite scaffold

, &
Pages 1440-1447 | Received 10 Mar 2015, Accepted 23 Mar 2015, Published online: 13 May 2015

References

  • Allori AC, Davidson EH, Reformat DD, Sailon AM, Freeman J, Vaughan A, et al. 2013. Design and validation of a dynamic cell-culture system for bone biology research and exogenous tissue-engineering applications. J Tissue Eng Regen Med. Published online: 11 SEP 2013, DOI: https://doi.org/10.1002/term.1810.
  • Aubert-Viard F, Martin A, Chai F, Neut C, Tabary N, Martel B, Blanchemain N. 2015. Chitosan finishing nonwoven textiles loaded with silver and iodide for antibacterial wound dressing applications. Biomed Mater. 10:015023.
  • Bagambisa FB, Joos U, Schilli W. 1993. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. J Biomed Mater Res. 27:1047–1055.
  • Baykan E, Koc A, Elcin AE, Elcin YM. 2014. Evaluation of a biomimetic poly(ε-caprolactone)/β-tricalcium phosphate multispiral scaffold for bone tissue engineering: In vitro and in vivo studies. Biointerphases. 9:029011.
  • Bonilla, CEP, Trujillo S, Demirdogen B, Jairo E, Perilla JE, Elcin YM, Ribelles JL. 2014. New porous polycaprolactone-silica composites for bone regeneration. Mat Sci Eng C Mat Biol Appl. 40:418–426.
  • Budiraharjo R, Neoh KGN, Kang ET. 2012. Hydroxyapatite-coated carboxymethyl chitosan scaffolds for promoting osteoblast and stem cell differentiation. J Colloid Interface Sci. 366:224–232.
  • Christenson RH. 1997. Biochemical markers of bone metabolism: an overview. Clin Biochem. 30:573–593.
  • Chung S, King MW. 2011. Design concepts and strategies for tissue engineering scaffolds. Biotechnol Appl Biochem. 58:423–438.
  • Demirdögen B, Bonilla CE, Trujillo S, Perilla JE, Elçin AE, Elcin YM, Ribelles JL. 2014.Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering. J Biomed Mater Res A. 102:3229–3236.
  • Dowling DP, Miller IS, Ardhaoui M, Gallagher WM. 2011. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma modified polystyrene. J Biomater Appl. 26:327–347.
  • Durkut S, Elcin AE, Elcin YM. 2006. Biodegradation of chitosan-tripolyphosphate beads: In vitro and in vivo studies. Artif Cell Blood Substit Immoobil Biotechnol. 34:263–276.
  • Elcin YM. 2004. Stem cells and tissue engineering. Adv Exp Med Biol. 553:301–316.
  • Elcin YM, Elcin AE, Bretzel RG, Linn T. 2003a. Pancreatic islet culture and transplantation using chitosan and PLGA scaffolds. Adv Exp Med Biol. 534:255–264.
  • Elcin YM, Elcin AE, Pappas GD. 2003b. Functional and morphological characteristics of bovine adrenal chromaffin cells on macroporous poly (D,L-lactide-co-glycolide) scaffolds. Tissue Eng. 9:1047–1056.
  • Emin N, Koc A, Durkut S, Elcin AE, Elcin YM. 2008. Engineering of rat articular cartilage on porous sponges: Effects of TGF-beta1 and microgravity bioreactor culture. Artif Cell Blood Substit Immoobil Biotechnol. 36:123–137.
  • Inanc B, Elcin AE, Elcin YM. 2007a. Effect of osteogenic induction on the in vitro differentiation of human embryonic stem cells cocultured with periodontal ligament fibroblasts. Artif Organs. 31:792–800.
  • Inanc B, Elcin AE, Koc A, Balos K, Parlar A, Elcin YM. 2007b. Encapsulation and osteoinduction of human periodontal ligament fibroblasts in chitosan-HA microspheres. J Biomed Mater Res A. 82:17–926.
  • Karageorgiou V, Kaplan D. 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 26:5474–5491.
  • Kilpadi KL, Chang PL, Bellis SL. 2001. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res A. 57:258–267.
  • Kim HW, Kim HE, Salih V. 2005. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds. Biomaterials. 26:5221–5230.
  • Kiroshka VV, Yurchuk TA, Repin NV, Petrova VA, Gofman IV, Skorik YA, et al. 2014. Adhesion, growth, and proliferation of endothelial cells on biopolymer extracellular film matrices. Bull Exp Biol Med. 158:153–158.
  • Koc A, Emin N, Elcin AE, Elcin YM. 2008. In vitro osteogenic differentiation of rat mesenchymal stem cells in a microgravity bioreactor. J Bioact Compat Pol. 23: 244–261.
  • Koc A, Finkenzeller G, Elcin AE, Stark GB, Elcin YM. 2014. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. J Biomater Appl. 29:748–760.
  • Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X. 2005. Preparation and characterization of nanohydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res A. 75:275–282.
  • Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X. 2006. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J. 42:3171–3179.
  • Lee KW, Wang S, Yaszemski MJ, Lu L. 2008. Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites. Biomaterials. 29:2839–2848.
  • Linn T, Erb D, Schneider D, Kidszun A, Elcin AE, Bretzel GB, Elcin YM. 2003. Polymers for induction of revascularisation in the rat fascial flap: application of vascular endothelial growth factor and pancreatic cell lines. Cell Transplantation. 12:769–778.
  • Liu X, Ma PX. 2004. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 32: 477–486.
  • Mallick K (Ed.). 2014. Bone Substitute Biomaterials. Woodhead Publishing. ISBN 978-0-85709-497-1.
  • Miclau T, Bozic K, Tay BK, Kim HG, Colnot C, Puttlitz C, et al. 2007. Bone injury, regeneration and repair. In: Einhorn T, O’Keefe RJ, Buckwalter JA, Eds. Orthopaedic Basic Science, 3rd ed. American Academy of Orthopaedic Surgeons.
  • Oliveira JM, Costa SA, Leonor IB, Malafaya PB, Mano JF, Reis RL. 2009. Novel hydroxyapatite/carboxymethyl chitosan composite scaffolds prepared through an innovative “autocatalytic” electroless coprecipitation route. J Biomed Mater Res A. 88:470–480.
  • Park H-J, Yu SJ, Yang K, Jin Y, Cho A-N, Kim J, et al. 2014. Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering. Biomaterials. 35:9811–9823.
  • Pillai CKS, Paul W, Sharma CP. 2009. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Poly Sci. 34:641–678.
  • Salgado AJ, Coutinho OP, Reis RL. 2004. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 4:743–765.
  • Seol YJ, Lee JY, Park YJ, Lee YM, Young K, Rhyu IC, et al. 2004. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett. 26:1037–1041.
  • Sudo H, Kodama H, Amagai Y. Yamamoto S, Kasai S. 1983. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol. 96:191–198.
  • Teixeira S, Fernandes H, Leusink A, van Blitterswijk C, Ferraz MP, Monteiro FJ, de Boer J. 2010. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res A. 93:567–575.
  • Teng SH, Lee EJ, Yoon BH, Shin DS, Kim HE, Oh JS. 2009. Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res A. 88: 569–580.
  • Thein-Han WW, Misra RD. 2009. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 5:1182–1197.
  • Wahl DA, Czernuszka D. 2006. Collagen hydroxyapatite composites for hard tissue repair. Eur Cell Mater. 11:43–56.
  • Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J. 2001. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res. 55:20–27.
  • Yhee JY, Son S, Kim SH, Park K, Choi K, Kwon IC. 2014. Self-assembled glycol chitosan nanoparticles for disease-specific theranostics. J Control Release. 193:202–213.
  • Zhang YF, Cheng XR, Chen Y, Shi B, Chen XH, Xu DX, Ke J. 2007. Three-dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue. J Biomater Appl. 21:333–349.
  • Zhang Q, Mochalin VN, Neitzel I, Hazeli K, Niu J, Kontsos A, et al. 2012. Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials. 33: 5067–5075.
  • Zhou H, Xu HH. 2011. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials. 32:7503–7513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.