1,666
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Graphene and tricobalt tetraoxide nanoparticles based biosensor for electrochemical glutamate sensing

, &
Pages 340-348 | Received 21 Nov 2015, Accepted 04 Feb 2016, Published online: 03 Mar 2016

References

  • Abbasi E, Akbarzadeh A, Kouhi M, Milani M. 2016. Graphene: synthesis, bio-applications, and properties. Artif Cells Nanomed Biotechnol. 44:150–156.
  • Acebal CC, Lista AG, Band BSF. 2008. Simultaneous determination of flavor enhancers in stock cube samples by using spectrophotometric data and multivariate calibration. Food Chem. 106:811–815.
  • Acuna AAM, Trias JF. 2009. A high performance liquid chromatography method with electrochemical detection of gamma-aminobutyric acid, glutamate and glutamine in rat brain homogenates. J Neurosci Methods. 183:176–181.
  • Ali A, Israr-Qadir M, Wazir Z, Tufail M, Ibupoto ZH, Jamil-Rana S, Willander M. 2015. Cobalt oxide magnetic nanoparticles–chitosan nanocomposite based electrochemical urea biosensor. Ind J Phys. 89:331–336.
  • Almeida NF, Mulchandani AK. 1993. A mediated amperometric enzyme electrode using tetrathiafulvalene and l-glutamate oxidase for the determination of l-glutamic acid. Anal Chim Acta. 282:353–361.
  • Backer M, Rakowski D, Poghossian A, Biselli M, Wagner P, Schöning MJ. 2013. Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis. J Biotechnol. 163:371–376.
  • Bard AJ, Faulkner LR. 2001. Electrochemical Methods: Fundamentals and Applications, 2nd ed. New York: John Wiley & Sons Inc.
  • Basu AK, Chattopadhyay P, Roychudhuri U, Chakraborty R. 2006. A biosensor based on co-immobilized l-glutamate oxidase and l-glutamate dehydrogenase for analysis of monosodium glutamate in food. Biosens Bioelectron. 21:1968–1972.
  • Batra B, Pundir CS. 2013. An amperometric glutamate biosensor based on immobilization of glutamate oxidase on to carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosens Bioelectron. 47:496–501.
  • Beyene NW, Moderegger H, Kalcher K. 2003. A stable glutamate biosensor based on mno2 bulk-modified screen-printed carbon electrode and nafion® film-immobilized glutamate oxidase. S Afr J. Chem. 56:54–59.
  • Buck K, Voehringer P, Ferger B. 2009. Rapid analysis of GABA and glutamate in microdialysis samples using high performance liquid chromatography and tandem mass spectrometry. J Neurosci Methods. 182:78–84.
  • Casero E, Alonso C, Petit-Domínguez MD, Vázquez L, Parra-Alfambra AM, Merino P, Lorenzo E. 2014. Lactate biosensor based on a bionanocomposite composed of titanium oxide nanoparticles, photocatalytically reduced graphene, and lactate oxidase. Microchim Acta. 181:79–87.
  • Chakraborty S, Raj CR. 2007. Amperometric biosensing of glutamate using carbon nanotube based electrode. Electrochem Commun. 9:1323–1330.
  • Chang KS, Chen CY. 2007. Effect of l-aspartate concentration on the response of the amperometric l-glutamate.sensor for the measurement of l-glutamate and aspartate aminotransferase activity in serum. Anal Lett. 40:933–945.
  • Chang KS, Hsu WL, Chen HY, Chang CK, Chen CY. 2003. Determination of glutamate pyruvate transaminase activity in clinical specimens using a biosensor composed of immobilized l-glutamate oxidase in a photo-crosslinkable polymer membrane on a palladium-deposited screen-printed carbon electrode. Anal Chim Acta. 481:199–208.
  • Claussen JC, Artiles MS, McLamore ES, Mohanty S, Shi J, Rickus JL, Fisher TS, Porterfield MD. 2011. Electrochemical glutamate biosensing with nanocube and nanosphere augmented single-walled carbon nanotube networks: a comparative study. J Mater Chem. 21:11224–11231.
  • Cui Y, Barford JP, Renneberg R. 2007. Development of an l-glutamate biosensor using the coimmobilization of l-glutamate dehydrogenase and p-hydroxybenzoate hydroxylase on a Clark-type electrode. Sens Actuat B. 127:358–361.
  • Dalkıran B, Kaçar C, Erden PE, Kılıc E. 2014. Amperometric xanthine biosensors based on chitosan–Co3O4–multiwall carbon nanotube modified glassy carbon electrode. Sens Actuat B. 200:83–91.
  • Demirhan BE, Demirhan B, Sönmez C, Torul H, Tamer U, Yentür G. 2015. Monosodium glutamate in chicken and beef stock cubes using high-performance liquid chromatography. Food Addit Contam Part B. 8:63–66.
  • Devi R, Yadav S, Nehra R, Yadav S, Pundir CS. 2013. Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. J Food Eng. 115:207–214.
  • Frey O, Holtzmanb T, McNamarab RM, Theobaldb DEH, van der Wala PD, de Rooija NF, et al. 2010. Enzyme-based choline and l-glutamate biosensor electrodes on silicon microprobe arrays. Biosens Bioelectron. 26:477–484.
  • Gholizadeh A, Shahrokhiana S, Zada AI, Mohajerzadeh S, Vosoughia M, Darbari S, Sanaee Z. 2012. Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate. Biosens Bioelectron. 31:110–115.
  • Gündüz T, Gündüz N, Kiliç E, Köseoğlu F, Oztas GS. 1988. Titrations in non aqueous media Part X. Potentiometric and conductimetric titrations of amino acids with tetrabutylammonium hydroxide in pyridine and acetonitrile solvents. Analyst. 113:715–719.
  • Jamal M, Xu J, Razeeb KM. 2010. Disposable biosensor based on immobilisation of glutamate oxidase on Pt nanoparticles modified Au nanowire array electrode. Biosens Bioelectron. 26:1420–1424.
  • Kaçar C, Dalkiran B, Erden PE, Kiliç E. 2014. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Appl Surf Sci. 311:139–146.
  • Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. 2011. Recent advances in graphene-based biosensors. Biosens Bioelectron. 26:4637–4648.
  • Kulagina NV, Shankar L, Michael AC. 1999. Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors. Anal Chem. 71:5093–5100.
  • Kwong AWK, Gründig B, Hu J, Renneberg R. 2000. Comparative study of hydrogel-immobilized l-glutamate oxidases for a novel thick-film biosensor and its application in food samples. Biotechnol Lett. 22:267–272.
  • Li X, Liu X, Wang W, Li L, Lu X. 2014. High loading Pt nanoparticles on functionalization of carbon nanotubes for fabricating nonenzyme hydrogen peroxide sensor. Biosens Bioelectron. 59:221–226.
  • Lim CX, Hoh HY, Ang PK, Loh KP. 2010. Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal Chem. 82:7387–7393.
  • Liu Y, Yu D, Zeng C, Miao Z, Dai L. 2010. Biocompatible graphene oxide-based glucose biosensors. Langmuir. 26:6158–6160.
  • Maalouf R, Chebib H, Saikali Y, Vittori O, Sigaud M, Jaffrezic-Renault N. 2007. Amperometric and impedimetric characterization of a glutamate biosensor based on nafion and a methyl viologen modified glassy carbon electrode. Biosens Bioelectron. 22:2682–2688.
  • Pauliukaite R, Zhylyak G, Citterio D, Spichiger-Keller UE. 2006. l-Glutamate biosensor for estimation of the taste of tomato specimens. Anal Bioanal Chem. 386:220–227.
  • Pérez-López B, Merkoçi A. 2012. Carbon nanotubes and graphene in analytical sciences. Microchim Acta. 179:1–16.
  • Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL. 2010. Graphene for electrochemical sensing and biosensing. Trends Anal Chem. 29:954–965.
  • Qiu JD, Huang J, Liang RP. 2011. Nanocomposite film based on graphene oxide for high performance flexible glucose biosensor. Sens Actuat B: Chem. 160:287–294.
  • Rahman MA, Kwon NH, Won MS, Choe ES, Shim YB. 2005. Functionalized conducting polymer as an enzyme-immobilizing substrate: an amperometric glutamate microbiosensor for in vivo measurements. Anal Chem. 77:4854–4860.
  • Ryan MR, Lowry JP, O'Neill RD. 1997. Biosensor for neurotransmitter l-glutamic acid designed for efficient use of l-glutamate oxidase and effective rejection of interference. Analyst. 122:1419–1424.
  • Şimşek Ş, Aynacı E, Arslan F. 2016. An amperometric biosensor for l-glutamate determination prepared from l-glutamate oxidase immobilized in polypyrrole–polyvinylsulphonate film. Artif Cells Nanomed Biotechnol. 44:356–361.
  • Sun CL, Lee HH, Yang JM, Wu CC. 2011. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron. 26:3450–3455.
  • Tang L, Zhu Y, Xu L, Yang X, Li C. 2007. Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes. Talanta. 73:438–443.
  • Tian F, Gourine AV, Huckstepp RTR, Dale N. 2009. A microelectrode biosensor for real time monitoring of l-glutamate release. Anal Chim Acta. 645:86–91.
  • Tseng T, Yao J, Chan WC. 2013. Selective enzyme immobilization on arrayed microelectrodes for the application of sensing neurotransmitters. Biochem Eng J. 78:146–153.
  • Tsukatani T, Matsumoto K. 2005. Sequential fluorometric quantification of γ-aminobutyrate and l-glutamate using a single line flow-injection system with immobilized-enzyme reactors. Anal Chim Acta. 546:154–160.
  • Tucci S, Pinto C, Goyo J, Rada P, Hernández L. 1998. Measurement of glutamine and glutamate by capillary electrophoresis and laser induced fluorescence detection in cerebrospinal fluid of meningitis sick children. Clin Biochem. 31:143–150.
  • Varma S, Yigzaw Y, Gorton L. 2006. Prussian blue-glutamate oxidase modified glassy carbon electrode: a sensitive l-glutamate and β-N-oxalyl-α,β-diaminopropionic acid (β-ODAP) sensor. Anal Chim Acta. 556:319–325.
  • Villarta RL, Cunningham DD, Guilbault GG. 1991. Amperometric enzyme electrodes for the determination of l-glutamate. Talanta. 38:49–55.
  • Wang M, Zhang D, Tong Z, Xu X, Yang X. 2011. Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode. J Appl Electrochem. 41:189–196.
  • Xu JZ, Zhu JJ, Wu Q, Hu Z, Chen HY. 2003. An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis. 15:219–224.
  • Yang L, Wang G, Liu Y, Wang M. 2013. Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles– carboxylic graphene–nafion modified electrode for detection of pesticides. Talanta. 113:135–141.
  • Yılmaz D, Karakuş E. 2011. Construction of a potentiometric glutamate biosensor for determination of glutamate in some real samples. Artif Cells Blood Substit Biotechnol. 39:385–391.
  • Yu Y, Sun Q, Zhou T, Zhu M, Jin L, Shi G. 2011. On-line microdialysis system with poly(amidoamine)-encapsulated Pt nanoparticles biosensor for glutamate sensing in vivo. Bioelectrochemistry. 81:53–57.
  • Zeng J, Wei W, Wu L, Liu X, Liu K, Li Y. 2006. Fabrication of poly(toluidine blue O)/carbon nanotube composite nanowires and its stable low-potential detection of NADH. J Electroanal Chem. 595:152–160.
  • Zeng Q, Cheng JS, Liu XF, Bai HT, Jiang JH. 2011. Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosens Bioelectron. 26:3456–3463.
  • Zhang M, Mullens C, Gorski W. 2006. Amperometric glutamate biosensor based on chitosan enzyme film. Electrochim Acta. 51:14528–14532.
  • Zhou K, Zhua Y, Yang X, Luo J, Li C, Luan S. 2010. A novel hydrogen peroxide biosensor based on Au–graphene–HRP–chitosan biocomposites. Electrochim Acta. 55:3055–3060.
  • Zhou M, Zhai Y, Dong S. 2009. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem. 81:5603–5613.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.