26
Views
35
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

T-cell activation via CD26 and caveolin-1 in rheumatoid synovium

, , , , , & show all
Pages 3-13 | Received 13 Sep 2005, Accepted 16 Dec 2005, Published online: 02 Jan 2014

References

  • Goronzy JJ, Weyand CM. Rheumatoid arthritis. Immunol Rev 2005;204:55–73.
  • Mor A, Abramson SB, PiRinger MH. The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clin Immunol 2005;115(4118–28.
  • Yamada R, Tanaka T, Unoki M, Nagai T, Sawada T, Ohnishi Y, et al. Association between a single-nucleotide polymorphism in the promoter of the human interleukin-3 gene and rheumatoid arthri-tis in Japanese patients, and maximum-likelihood estimation of combinatorial effect that two genetic loci have on susceptibility to the disease. Am J Hum Genet 2001;68(4674–85.
  • Elliott MJ, Maini RN, Feldmann M, Kalden JR, Antoni C, Smolen JS, et al. Randomised double-blind comparison of chimeric mono-clonal antibody to tumour necrosis factor alpha (cA2) versus pla-cebo in rheumatoid arthritis. Lancet 1994;344(8930):1105–10.
  • Bresnihan B, Alvaro-Gracia JM, Cobby M, Doherty M, Domljan Z, Emery P, et al. Treatment of rheumatoid arthritis with recombi-nant human interleukin-1 receptor antagonist. Arthritis Rheum 1998;41(12):2196–204.
  • Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid ar-thritis. Arthritis Rheum 1998;41(9):1552–63.
  • Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL, et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med 1997;337(3):141–7.
  • Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 2000;343(241586–93.
  • Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med 2000;343(241594–602.
  • Moreland LW, Schiff MH, Baumgartner SW, Tindall EA, Fleischmann RM, Bulpitt KJ, et al. Etanercept therapy in rheuma-toid arthritis. A randomized, controlled trial. Ann Intern Med 1999;130(6):478–86.
  • Nepom GT, Byers P, Seyfried C, Healey LA, Wilske KR, Stage D, et al. HLA genes associated with rheumatoid arthritis. Iden-tification of susceptibility alleles using specific oligonucleotide probes. Arthritis Rheum 1989;32(1):15–21.
  • Gao XJ, Olsen NJ, Pincus T, Stastny P. HLA-DR alleles with naturally occurring amino acid substitutions and risk for develop-ment of rheumatoid arthritis. Arthritis Rheum 1990;33(7):939–46.
  • Nakai Y, Wakisaka A, Aizawa M, Itakura K, Nakai H, Ohashi A. HLA and rheumatoid arthritis in the Japanese. Arthritis Rheum 1981;24(5):722–5.
  • Ohta N, Nishimura YK, Tanimoto K, Horiuchi Y, Abe C, Shiokawa Y, et al. Association between HLA and Japanese patients with rheumatoid arthritis. Hum Immunol 1982;5(2):123–32.
  • Fox DA. The role of T cells in the immunopathogenesis of rheuma-toid arthritis: new perspectives. Arthritis Rheum 1997;40(4):598–609.
  • GoronzyJJ, Weyand CM. T-cell regulation in rheumatoid arthritis. Curr Opin Ftheumatol 2004;16(3):212–7.
  • Gracie JA, Forsey RJ, Chan WL, Gilmour A, Leung BP, Greer MR, et al. A proinflammatory role for IL-18 in rheumatoid arthri-tis. J Clin Invest 1999;104(10):1393–401.
  • Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, et al. The chemokine receptors CXCR3 and CCR5 mark sub-sets of T cells associated with certain inflammatory reactions. J Clin Invest 1998;101(4):746–54.
  • Eguchi K, Ueki Y, Shimomura C, Otsubo T, Nakao H, Migita K, et al. Increment in the Tal+ cells in the peripheral blood and thyroid tissue of patients with Graves' disease. J Immunol 1989;142(12):4233–40.
  • Gerli R, Muscat C, Bertotto A, Bistoni 0, Agea E, Tognellini R, et al. CD26 surface molecule involvement in T-cell activation and lymphokine synthesis in rheumatoid and other inflammatory synovitis. Clin Immunol Immunopathol 1996;80(1):31–7.
  • Haller DA, Fox DA, Manning ME, Schlossman SF, Reinherz EL, Weiner HL. In vivo activated T lymphocytes in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. N Engl J Med 1985;312(241405–11.
  • Mizokami A, Eguchi K, Kawakami A, Ida H, Kawabe Y, Tsukada T, et al. Increased population of high fluorescence 1F7 (CD26) antigen on T cells in synovial fluid of patients with rheumatoid arthritis. J Ftheumatol 1996;23(142022–6.
  • Muscat C, Bertotto A, Agea E, Bistoni 0, Ercolani R, Tognellini R, et al. Expression and functional role of 1F7 (CD26) antigen on peripheral blood and synovial fluid T cells in rheumatoid arthritis patients. Clin Exp Immunol 1994;98(4252–6.
  • Masuyama J, Berman JS, Cruikshank WW, Morimoto C, Center DM. Evidence for recent as well as long term activation of T cells migrating through endothelial cell monolayers in vitro. J Immunol 1992;148(5):1367–74.
  • Appleman LJ, Boussiotis VA. T cell anergy and costimulation. Immunol Rev 2003;192:161–80.
  • Dang NH, Torimoto Y, Shimamura K, Tanaka T, Daley JF, Schlossman SF, et al. 1F7 (CD26): a marker of thymic maturation involved in the differential regulation of the CD3 and CD2 path-ways of human thymocyte activation. J Immunol 1991;147(9):2825–32.
  • Dang NH, Torimoto Y, Sugita K, Daley JF, Schow P, Prado C, et al. Cell surface modulation of CD26 by anti-1F7 monoclonal antibody. Analysis of surface expression and human T cell activa-tion. J Immunol 1990;145(12):3963–71.
  • Morimoto C, Schlossman SF. The structure and function of CD26 in the T-cell immune response. Immunol Rev 1998;161:55–70.
  • Morimoto C, Torimoto Y, Levinson G, Rudd CE, Schrieber M, Dang NH, et al. 1F7, a novel cell surface molecule, involved in helper function of CD4 cells. J Immunol 1989;143(11):3430–9.
  • Ohnuma K, Munakata Y, Ishii T, Iwata S, Kobayashi S, Hosono 0, et al. Soluble CD26/dipeptidyl peptidase IV induces T cell prolif-eration through CD86 up-regulation on APCs. J Immunol 2001;167(12):6745–55.
  • Ohnuma K, Yamochi T, Uchiyama M, Nishibashi K, Yoshikawa N, Shimizu N, et al. CD26 up-regulates expression of CD86 on antigen-presenting cells by means of caveolin-1. Proc Natl Acad Sci USA 2004;101(39):14186–91.
  • Tanaka T, Camerini D, Seed B, Torimoto Y, Dang NH, Kameoka J, et al. Cloning and functional expression of the T cell activation antigen CD26. J Immunol 1992;149(4481–6.
  • Naquet P, MacDonald HR, Brekelmans P, Barbet J, Marchetto S, Van Ewijk W, et al. A novel T cell-activating molecule (THAM) highly expressed on CD4-CD8- murine thymocytes. J Immunol 1988;141(12):4101–9.
  • Yan S, Marguet D, Dobers J, Reutter W, Fan H. Deficiency of CD26 results in a change of cytokine and immunoglobulin secre-tion after stimulation by pokeweed mitogen. Eur J Immunol 2003;33(6):1519–27.
  • Marguet D, Baggio L, Kobayashi T, Bernard AM, Pierres M, Nielsen PF, et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci USA 2000;97(12):6874–9.
  • Fleischer B. CD26: a surface protease involved in T-cell activation. Immunol Today 1994;15(4):180–4.
  • von Bonin A, Huhn J, Fleischer B. Dipeptidyl-peptidase IV/CD26 on T cells: analysis of an alternative T-cell activation pathway. Immunol Rev 1998;161: 43–53.
  • Oravecz T, Pall M, Roderiquez G, Gorrell MD, Ditto M, Nguyen NY, et al. Regulation of the receptor specificity and function of the chemokine FtANTES (regulated on activation, normal T cell ex-pressed and secreted) by dipeptidyl peptidase W (CD26)-mediated cleavage. J Exp Med 1997;186(11):1865–72.
  • Proost P, Struyf S, Schots D, Opdenakker G, Sozzani S, Allavena P, et al. Truncation of macrophage-derived chemokine by CD26/ dipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction. J Biol Chem 1999;274(7):3988–93.
  • Christopherson KW, 2nd, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004;305(5686):1000–3.
  • Christopherson KW, Cooper S, Hangoc G, Broxmeyer HE. CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26-/- mice. Exp Hematol 2003;31(11):1126–34.
  • Christopherson KW, 2nd, Hangoc G, Broxmeyer HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stro-mat cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 2002;169(12):7000–8.
  • Wiedeman PE, Trevillyan JM. Dipeptidyl peptidase IV inhibitors for the treatment of impaired glucose tolerance and type 2 diabe-tes. Curr Opin Invest Drugs 2003;4(4):412–20.
  • Ftistic S, Byiers S, Foley J, Holmes D. Improved glycaemic control with dipeptidyl peptidase-4 inhibition in patients with type 2 diabe-tes: vildagliptin (LAF237) dose response. Diabetes Obes Metab 2005;7(6):692–8.
  • Dang NH, Torimoto Y, Deusch K, Schlossman SF, Morimoto C. Comitogenic effect of solid-phase immobilized anti-1F7 on human CD4 T cell activation via CD3 and CD2 pathways. J Immunol 1990;144(11):4092–100.
  • Dang NH, Torimoto Y, Schlossman SF, Morimoto C. Human CD4 helper T cell activation: functional involvement of two distinct collagen receptors, 1F7 and VLA integrin family. J Exp Med 1990;172(2):649–52.
  • Ruiz P, Zacharievich N, Hao L, Viciana AL, Shenkin M. Human thymocyte dipeptidyl peptidase IV (CD26) activity is altered with stage of ontogeny. Clin Immunol Immunopathol 1998;88(2):156–68.
  • Tanaka T, Kameoka J, Yaron A, Schlossman SF, Morimoto C. The costimulatory activity of the CD26 antigen requires dipeptidyl peptidase IV enzymatic activity. Proc Natl Acad Sci USA 1993;90(10):4586–90.
  • Kameoka J, Tanaka T, Nojima Y, Schlossman SF, Morimoto C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 1993;261(5124466–9.
  • Dong RP, Kameoka J, Hegen M, Tanaka T, Xu Y, Schlossman SF, et al. Characterization of adenosine deaminase binding to human CD26 on T cells and its biologic role in immune response. J Immunol 1996;156(4):1349–55.
  • Dong RP, Tachibana K, Hegen M, Munakata Y, Cho D, Schlossman SF, et al. Determination of adenosine deaminase bind-ing domain on CD26 and its immunoregulatory effect on T cell activation. J Immunol 1997;159(12):6070–6.
  • Goldblum RM, Schmalstieg FC, Nelson JA, Mills GC. Adenosine deaminase (ADA) and other enzyme abnormalities in immune deficiency states. Birth Defects Orig Artic Ser 1978;14(6A):73–84.
  • Dang NH, Hagemeister FB, Duvic M, Romaguera JE, Younes A, Jones D, et al. Pentostatin in T-non-Hodgkin's lymphomas: efficacy and effect on CD26+ T lymphocytes. Oncol Rep 2003; 10(5):1513–8.
  • Torimoto Y, Dang NH, Vivier E, Tanaka T, Schlossman SF, Morimoto C. Coassociation of CD26 (dipeptidyl peptidase IV) with CD45 on the surface of human T lymphocytes. J Immunol 1991;147(8):2514–7.
  • Ishii T, Ohnuma K, Murakami A, Takasawa N, Kobayashi S, Dang NH, et al. CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc Natl Acad Sci USA 2001;98(21):12138–43.
  • Kobayashi S, Ohnuma K, Uchiyama M, lino K, Iwata S, Dang NH, et al. Association of CD26 with CD45FtA outside lipid rafts attenu-ates cord blood T-cell activation. Blood 2004;103(3):1002–10.
  • Iwaki-Egawa S, Watanabe Y, Kikuya Y, Fujimoto Y. Dipeptidyl peptidase IV from human serum: purification, characterization, and N-terminal amino acid sequence. J Biochem (Tokyo) 1998;124(2):428–33.
  • Durinx C, Lambeir AM, Bosmans E, Falmagne JB, Berghmans R, Haemers A, et al. Molecular characterization of dipeptidyl pepti-dase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur J Biochem 2000;267(17):5608–13.
  • Tanaka T, Duke-Cohan JS, Kameoka J, Yaron A, Lee I, Schlossman SF, et al. Enhancement of antigen-induced T-cell pro-liferation by soluble CD26/dipeptidyl peptidase IV. Proc Natl Acad Sci USA 1994;91(8):3082–6.
  • Glenney Jr Jr. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 1989;264(34):20163–6.
  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. Caveolin, a protein component of caveolae mem-brane coats. Cell 1992;68(4):673–82.
  • Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1955;1(5):445–58.
  • Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, et al. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 1999;19(11):7289–304.
  • Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 2001;276(41):38121–38.
  • Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, et al. Caveolin-2-deficient mice show evidence of severe pul-monary dysfunction without disruption of caveolae. Mol Cell Biol 2002;22(7):2329–44.
  • Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M, et al. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 2001;276(24):21425–33.
  • Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 1996;93(1):131–5.
  • Scherer PE, Tang Z, Chun M, Sargiacomo M, Lodish HF, Lisanti MP. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J Biol Chem 1995;270(27):16395–401.
  • Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 1997;272(10):6525–33.
  • Gargalovic P, Dory L. Caveolins and macrophage lipid metabo-lism. J Lipid Res 2003;44(411–21.
  • Ftiemann D, Hansen GH, Niels-Christiansen L, Thorsen E, Immerdal L, Santos AN, et al. Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains. Biochem J 2001;354(Pt 1):47–55.
  • Woodman SE, Ashton AW, Schubert W, Lee H, Williams TM, Medina FA, et al. Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol 2003; 162(6):2059–68.
  • Liu J, Wang XB, Park DS, Lisanti MP. Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 2002;277(12):10661–8.
  • Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G, et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 2000; 6(12):1362–7.
  • Cheng HC, Abdel-Ghany M, Elble RC, Pauli BU. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J Biol Chem 1998;273(37):24207–15.
  • Cheng HC, Abdel-Ghany M, Pauli BU. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J Biol Chem 2003;278(27):24600–7.
  • Wrenger S, Faust J, Mrestani-Klaus C, Fengler A, Stockel- Maschek A, Lorey S, et al. Down-regulation of T cell activation following inhibition of dipeptidyl peptidase IV/CD26 by the Nterminal part of the thromboxane A2 receptor. J Biol Chem 2000;275(29):22180–6.
  • Herrera C, Morimoto C, Blanco J, Mallol J, Arenzana F, Lluis C, et al. Comodulation of CXCR4 and CD26 in human lymphocytes. J Biol Chem 2001;276(22):19532–9.
  • Montesano R, Roth J, Robert A, Orci L. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 1982;296(5858):651–3.
  • Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic 2002; 3(5):311–20.
  • Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, et al. The immunological synapse: a molecular machine controlling T cell activation. Science 1999;285(5425):221–7.
  • Turley SJ, Inaba K, Garrett WS, Ebersold M, Unternaehrer J, Steinman RM, et al. Transport of peptide-MHC class II complexes in developing dendritic cells. Science 2000;288(5465):522–7.
  • Brennan FM, Hayes AL, Ciesielski CJ, Green P, Foxwell BM, Feldmann M. Evidence that rheumatoid arthritis synovial T cells are similar to cytokine-activated T cells: involvement of phosphatidylinositol 3-kinase and nuclear factor kappaB pathways in tumor necrosis factor alpha production in rheumatoid arthritis. Arthritis Rheum 2002;46(1):31–41.
  • Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S, et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 2003;349(20):1907–15.
  • Moreland LW, Alten R, Van den Bosch F, Appelboom T, Leon M, Emery P, et al. Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebocontrolled clinical trial evaluating CTLA-4Ig and LEA29Y eightyfive days after the first infusion. Arthritis Rheum 2002;46(6): 1470–9.
  • Lindsten T, Lee KP, Harris ES, Petryniak B, Craighead N, Reynolds PJ, et al. Characterization of CTLA-4 structure and expression on human T cells. J Immunol 1993;151(7):3489–99.
  • Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA Jr, Lombard LA, et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 1993; 262(5135):909–11.
  • Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, et al. A new member of the immunoglobulin superfamily - CTLA-4. Nature 1987;328(6127):267–70.
  • Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1994;1(9):793–801.
  • Freeman GJ, Borriello F, Hodes RJ, Reiser H, Hathcock KS, Laszlo G, et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 1993;262(5135): 907–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.