78
Views
63
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Regulation of osteoclast function

, , , &
Pages 167-177 | Received 04 Jul 2011, Accepted 29 Aug 2011, Published online: 02 Jan 2014

References

  • Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20:345–57.
  • Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–8.
  • Nakamura I, Rodan GA, Duong LT. Regulatory mechanism of osteoclast activation. J Electron Microsc. 2003;52:527–33.
  • Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Moseley JM, et al. Osteoblastic cells are involved in osteoclast formation. Endocrinology. 1988;123:2600–2.
  • Tezuka K, Sato T, Kamioka H, Nijweide PJ, Tanaka K, Matsuo T, et al. Identification of osteopontin in isolated rabbit osteoclasts. Biochem Biophys Res Commun. 1992;186:911–7.
  • Suda T, Jimi E, Nakamura I, Takahashi N. Role of 1a,25-di-hydroxyvitamin D3 in osteoclast differentiation and function. In: McCormick DB, Suttie JW, Wagner C, editors. Methods in enzymology, vitamins and coenzymes, vol 282. San Diego: Academic Press; 1997. pp. 223–35.
  • Wesolowski G, Duong LT, Lakkakorpi PT, Nagy RM, Tezuka K, Tanaka H, et al. Isolation and characterization of highly enriched, prefusion mouse osteoclastic cells. Exp Cell Res. 1995;219:679–86.
  • Jimi E, Nakamura I, Amano H, Taguchi Y, Tsurukai T, Tamura M, et al. Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinol-ogy. 1996;37:2187–90.
  • Tanaka S, Takahashi T, Takayanagi H, Miyazaki T, Oda H, Nakamura K, et al. Modulation of osteoclast function by ade-novirus vector-induced epidermal growth factor receptor. J Bone Miner Res. 1998;13:1714–20.
  • Duong LT, Nakamura I, Lakkakorpi PT, Bett AJ, Lipfert L, Rodan GA. Inhibition of osteoclast function by adenovirus expressing antisense PYK2. J Biol Chem. 2001;276:7484–92.
  • Suda T, Nakamura I, Jimi E, Takahashi N. Regulation of osteo-clast function. J Bone Miner Res. 1997;12:869–79.
  • Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okumuram H, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990;345:442–4.
  • Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med. 1993;178:1733–44.
  • Jimi E, Shuto T, Koga T. Macrophage colony-stimulating factor and interleukin-1a maintain the survival of osteoclast-like cells. Endocrinology. 1995;136: 808–11.
  • Jimi E, Nakamura I, Duong LT, Ikebe T, Takahashi N, Rodan GA, et al. Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/ stromal cells. Exp Cell Res. 1999;247:84–93.
  • Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998;95:3597–602.
  • Lacey DL, Timms E, Tan HL, Kelley M, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteo-clast differentiation and activation. Cell. 1998;93:165–76.
  • Jimi E, Akiyama S, Tsurukai T, Okahashi N, Kobayashi K, Udagawa N, et al. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol. 1999;163:434–42.
  • Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/ RANKL-RANK interaction. J Exp Med. 2000;191:275–86.
  • Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F, et al. Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med. 2005;202:589–95.
  • Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, et al. Biology and action of colony-stimulating factor-1. Mol Reprod Dev. 1997;46:4–10.
  • Felix R, Cecchini MG, Fleisch H. Macrophage colony stimulat-ing factor restores in vivo bone resorption in the op/op osteope-trotic mouse. Endocrinology. 1990;127:2592–4.
  • Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390:175–9.
  • Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem. 1997;272:25190–4.
  • Jones SJ, Boyde A, Ali NN. The resorption of biological and non-biological substrates by cultured avian and mammalian osteo-clasts. Anat Embryo' (Berl). 1984;170:247–56.
  • Jones SJ, Boyde A, Ali NN, Maconnachie E. A review of bone cell and substratum interactions. Scanning. 1985;7:5–24.
  • Chambers TJ, Thomson BM, Fuller K. Effect of substrate com-position on bone resorption by rabbit osteoclasts. J Cell Sci. 1984;70:61–71.
  • Silver IA, Murrills RJ, Etherington DJ. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res. 1988;175:266–76.
  • Destaing 0, Saltel F, Géminard JC, Jurdic P, Bard F. Podosomes display actin turnover and dynamic self-organization in osteo-clasts expressing actin-green fluorescent protein. Mol Biol Cell. 2003;14:407–16.
  • Jurdic P, Saltel F, Chabadel A, Destaing 0. Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol. 2006;85: 195–202.
  • Lakkakorpi PT, Väänänen H. Kinetics of the osteoclast cyto-skeleton during the resorption cycle in vitro. J Bone Miner Res. 1991;6:817–26.
  • Nakamura I, Takahashi N, Sasaki T, Tanaka S, Udagawa N, Murakami H, et al. Wortmannin, a specific inhibitor of phos-phatidylinosito1-3 kinase, blocks osteoclastic bone resorption. FEBS Lett. 1995;361:79–84.
  • Nakamura I, Takahashi N, Sasaki T, Jimi E, Kurokawa T, Suda T. Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts. J Bone Miner Res. 1996;12:1873–9.
  • Suzuki H, Nakamura I, Takahashi N, Ikuhara T, Matsuzaki K, Isogai Y, et al. Calcitonin-induced changes in the cytoskeleton are mediated by a signal pathway associated with protein kinase A in osteoclasts. Endocrinology. 1996;137:4685–90.
  • Murakami H, Takahashi N, Sasaki T, Udagawa N, Tanaka S, Nakamura I, et al. A possible mechanism of the specific action of bisphosphonates on osteoclasts: tiludronate preferentially affects polarized osteoclasts having ruffled borders. Bone. 1995;17:137–44.
  • Woo JT, Kawatani M, Kato M, Shinki T, Yonezawa T, Kanoh N, et al. Reveromycin A, an agent for osteoporosis, inhibits bone resorption by inducing apoptosis specifically in osteoclasts. Proc Natl Acad Sci USA. 2006;103:4729–34.
  • Fuller K, Ross JL, Szewczyk KA, Moss R, Chambers TJ. Bone is not essential for osteoclast activation. PLoS One. 2010;5:e12837.
  • Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.
  • Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science. 1995;268:233–9.
  • Horton MA, Rodan GA. Integrins as therapeutic targets in bone disease. In: Horton MA, editor. Adhesion receptors as therapeutic targets. Boca Raton: CRC Press Inc., 1996. pp. 223–245.
  • Horton MA. The av/33 integrins "vitronectin receptor". Int J Biochem Cell Biol. 1997;29:721–5.
  • Chambers TJ, Fuller K, Darby JA, Pringle JAS, Horton MA. Monoclonal antibodies against osteoclasts inhibit bone resorption in vivo. Bone Miner. 1986;1:127–35.
  • Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M. The osteoclasts functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol. 1989;109:1817–26.
  • Sato M, Sardana MK, Grasser WA, Garsky VM, Murray JM, Gould RJ. Echistatin is a potent inhibitor of bone resorption in culture. J Cell Biol. 1990;111:1713–23.
  • Clover J, Dodds RA, Gowen M. Integrin subunit expression by human osteoblasts and osteoclasts in situ and in culture. J Cell Sci. 1992;103:267–71.
  • Horton MA, Taylor ML, Arnett TR, Helfrich MH. Arg-Gly-Asp (RGD) peptides and the anti-vitronectin receptor antibody 23C6 inhibit dentine resorption and cell spreading by osteoclasts. Exp Cell Res. 1991;195:368–75.
  • Fisher JE, Caulfield M, Sato M, Quartuccio HA, Gould RH, Garsky VM, et al. Inhibition of osteoclastic bone resorption in vivo by echistatin, an "arginyl-glycyl-aspartyl"(RGD)-contain-ing protein. Endocrinology. 1993;132:1411–3.
  • Engleman VW, Nickols GA, Ross FP, Horton MA, Griggs DW, Settle SL, et al. A peptidomimetic antagonist of the av/33 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J Clin Invest. 1997;99:2284–92.
  • Masarachia P, Yamamoto M, Leu C-T, Rodan G, Duong LT. Histomorphometric evidence for echistatin inhibition of bone resorption in mice with secondary hyperparathyroidism. Endo-crinology. 1998;139:1401–10.
  • Crippes BA, Engleman VW, Settle SL, Delarco J, Ornberg RL, Helfrich MH, et al. Antibody to beta(3) integrin inhibits osteo-clast-mediated bone resorption in the thyroparathyroidectomized rat. Endocrinology. 1996;137:918–24.
  • Yamamoto M, Fisher JE, Gentile M, Seedor JG, Leu C-T, Rodan SB, et al. The integrin ligand echistatin prevents bone loss in ovariectomized mice and rats. Endocrinology. 1998;139:1411–9.
  • McHugh KP, Hodivala-Dilke K, Zheng M-H, Namba N, Lam J, Novack D, et al. Mice lacking /33 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest. 2000;105:433–40.
  • Soriano P, Montgomery C, Geske R, Bradley A. Targeted dis-ruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 1991;64:693–702.
  • Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 1997;13:513–609.
  • Tanaka S, Takahashi N, Udagawa N, Sasaki T, Fukui Y, Kurokawa T, et al. Osteoclasts express high levels of pp60, preferentially on ruffled border membranes. FEBS Lett. 1992;313:85–9.
  • Home WC, Neff L, Chatterjee D, Lomri A, Levy JB, Baron R. Osteoclasts express high levels of pp60e-s' in association with intracellular membranes. J Cell Biol. 1992;119:1003–13.
  • Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR. Requirement of pp60' expression for osteoclasts to form ruf-fled border and resorb bone in mice. J Clin Invest. 1992;90: 1622–7.
  • Lowe C, Yoneda T, Boyce BF, Chen H, Mundy GR. Osteope-trosis in c-src-deficient mice is due to an autonomous defect of osteoclasts. Proc Natl Acad Sci USA. 1993;90:4485–9.
  • Nakamura I, Jimi E, Duong LT, Sasaki T, Takahashi N, Rodan GA, et al. Tyrosine phosphorylation of 130c" is involved in actin organization in osteoclasts. J Biol Chem. 1998;273: 11144–9.
  • Nakamura I, Lipfert L, Rodan GA, Duong LT. Convergence of av/33 integrin- and M-CSF-mediated signals in osteoclasts: the involvement of phospholipase-Cy. J Cell Biol. 2001;152:361–73.
  • Schwartzberg PL, Xing L, Hoffmann 0, Lowell CA, Garrett L, Boyce BF, et al. Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src -/- mutant mice. Genes Dev. 1997;11:2835–44.
  • Xing L, Venegas AM, Chen A, Garrett-Beal L, Boyce BF, Ver-mas 11E, et al. Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival. Genes Dev. 2001;15:241–53.
  • Miyazaki T, Takayanagi H, Isshiki M, Takahashi T, Okada M, Fukui Y, et al. In vitro and in vivo suppression of osteoclast function by adenovirus vector-induced csk gene. J Bone Miner Res. 2000;15:41–51.
  • Miyazaki T, Sanjay A, Neff L, Tanaka S, Home WC, Baron R. Src kinase activity is essential for osteoclast function. J Biol Chem. 2004;279:17660–6.
  • Tanaka S, Amling M, Neff L, Peyman A, Uhlmann E, Levy JB, et al. c-Cbl is downstream of c-Src in a signaling pathway nec-essary for bone resorption. Nature. 1996;383:528–31.
  • Murphy MA, Schnall RG, Venter DJ, Barnett L, Bertoncello I, 'Thien CB, et al. Tissue hyperplasia and enhanced T-cell signal-ling via ZAP-70 in c-Cbl-deficient mice. Mol Cell Biol. 1998;18: 4872–82.
  • Nakajima A, Sanjay A, Chiusaroli R, Adapala NS, Neff L, Itzsteink C, et al. Loss of Cbl-b increases osteoclast bone-resorbing activity and induces osteopenia. J Bone Miner Res. 2009;24:1162–72.
  • Joazeiro CAP, Wing SS, Huang H-K, Leverson JD, Hunter T, Liu Y-C. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science. 1999;286: 309–12.
  • Lee PSW, Wang Y, Dominguez MG, Yeung Y-G, Murphy MA, Bowtell DDL, et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J. 1999;18: 3616–28.
  • Yokouchi M, Kondo T, Sanjay A, Houghton A, Yoshimura A, Komiya S, et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem. 2001;276:35185–93.
  • Duong LT, Lakkakorpi PT, Nakamura I, Machwate M, Nagy RM, Rodan GA. PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by av/33 integrin, and associated with SRC kinase. J Clin Invest. 1998;102:881–92.
  • Schlaepfer DD, Hunter T. Integrin signalling and tyrosine phos-phorylation: just the FAKs? Trends Cell Biol. 1998;8:151–7.
  • Gil-Henn H, Destaing 0, Sims NA, Aoki K, Alles N, Neff L, et al. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(-/-) mice. J Cell Biol. 2007;178: 1053–64.
  • Buckbinder L, Crawford DT, Qi H, Ke HZ, Olson LM, Long KR, et al. Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc Natl Acad Sci USA. 2007;104:10619–24.
  • Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H, et al. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J. 1994;13:3748–56.
  • Lakkakorpi PT, Nakamura I, Nagy RM, Parsons JT, Rodan GA, Duong LT. Stable association of PYK2 and p130(Cas) in osteo-clasts and their co-localization in the sealing zone. J Biol Chem. 1999;274:4900–7.
  • Honda H, Oda H, Nakamoto T, Honda Z, Sakai R, Suzuki T, et al. Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Nat Genet. 1998;19:361–5.
  • Sawada Y, Tamada M, Dubin-Thaler BJ, Chemiavskaya 0, Sakai R, Tanaka S, et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell. 2006;127: 1015–26.
  • Zhang D, Udagawa N, Nakamura I, Murakami H, Saito S, Yamasaki K, Shibasaki Y, Morii N, Narumiya S, Takahashi N, etal. The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts. J Cell Sci. 1995;108: 2285–92.
  • Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL, et al. Vav3 regulates osteoclast function and bone mass. Nat Med. 2005;11:284–90.
  • Inoue J, Ishida T, Tsukamoto N, Kobayashi N, Naito A, Azuma S, et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adaptor proteins that mediate cytokine signaling. Exp Cell Res. 2000;254:14–24.
  • Lomaga MA, Yeh W-C, Sarosi I, Duncan GS, Furlonger C, Ho A, et al. TRAF6 deficiency results in osteopetrosis and defective interlerkin-1, CD40, and LPS signaling. Genes Dev. 1999;13: 1015–24.
  • Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells. 1999;4:353–62.
  • Nakamura I, Kadono Y, Takayanagi H, Jimi E, Miyazaki T, Oda H, et al. IL-1 regulates cytoskeletal organization in osteoclasts via TNF receptor-associated factor 6/c-Src complex. J Immunol. 2002;168:5103–9.
  • Wong BR, Besser D, Kim N, Anon JR, Vologodskaia M, Hanafusa H, et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell. 1999;4:1041–9.
  • Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, et al. Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteo-clastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2000;43:259–69.
  • Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, etal. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 2008;58:1299–309.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.