695
Views
90
CrossRef citations to date
0
Altmetric
Original Articles

Creep – fatigue damage accumulation and interaction diagram based on metallographic interpretation of mechanisms

&
Pages 27-54 | Published online: 24 Oct 2014

References

  • Miner, M. A. (1945) Cumulative damage in fatigue. J Appl. Mech., 12, A159—A164.
  • Robinson, E. L. (1952) Effect of temperature variation on the long-time rupture strength of steels. Trans. ASME, 74, 777 — 781.
  • Edmunds, H. G. and White, D. J. (1966) Observations on the effect of creep relaxation on high strain fatigue. J Mech. Eng. Sci., 8, 310–321.
  • Esztergar, E. P. and Ellis, J. R. (1971) Cumulative damage concepts in creep—fatigue life prediction. In: Thermal Stresses and Thermal Fatigue, Littler, D. J. (ed.), Butterworths, London, pp. 128-155.
  • Wareing, J. (1999) Design against elevated temperature creep—fatigue: the role of failure modelling. In: Engineering against Fatigue, Beynon J. H. et al. (eds.), A. A. Balkema, Rotterdam, pp. 547-556.
  • Conway, J. B., Stentz, R. H. and Berling, J. T. (1981) Fatigue, Tensile and Relaxation Behaviour of Stainless Steels, US Atomic Energy Commission, Ohio.
  • Skelton, R. P., Rees, C. J. and Webster, G. A. (1996) Energy damage summation methods for crack initiation and growth during block loading in high temperature low cycle fatigue. Fatigue Fract. Eng. Mater Struct., 19, 287–297.
  • Skelton, R. P. (2003) Creep—fatigue interactions (crack initia-tion). In: Comprehensive Structural Integrity, Vol. 5: Creep and high temperature failure, Saxena, A. (ed.), Elsevier Per-gamon, London, pp. 25-112.
  • ASME: Boiler and Pressure Vessel Code, Part III, Division 1, Subsection NH — Class 1 Components in Elevated Tempera-ture Service, ASME, New York, 2004.
  • Ellison, E. G. (1969) A review of the interaction of creep and fatigue. J Mech. Eng. Sci., 11, 318 —339.
  • Krempl, E. and Wundt, B. M. (1971) Hold time effects in high temperature low-cycle fatigue: A literature survey and interpretive report, ASTM STP No. 489, ASTM, Philadelphia, pp. i—vi and 1-29.
  • Tomkins, B. and Wareing, J. (1977) Elevated-temperature fatigue interactions in engineering materials. Metal Sci., 11, 414–424.
  • Batte, A. D. (1983) Creep—fatigue life predictions. In: Fatigue at High Temperature, Skelton, R. P. (ed.), Applied Science Publishers, London, pp. 365-401.
  • Miller, D. A., Priest, R. H. and Ellison, E. G. (1984) A review of material response and life prediction techniques under creep — fatigue loading conditions. High Temp. Mat. Proc., 6, 155 — 194.
  • Priest, R. H. (1989) Crack initiation and growth during creep—fatigue. In: Proc. Engineering Applications of Modern Plas-ticity, Nagoya, Japan, (workshop session).
  • Ainsworth, R. A. (ed.), (2003) Assessment Procedure for the High Temperature Response of Structures, Issue 3, BEGL Ltd., Barnwood.
  • Ainsworth, R. A. (1989) Defect assessment procedures at high temperature. In: Proc. SMIRT 10 Conf, Vol. L, Anaheim, Ca., pp.79-90.
  • Remy, L. and Skelton, R. P. (1992) Damage assessment of components experiencing thermal transients. In: High Tem-perature Structural Design, E5I512 Larsson, L. H. (ed.), Mechanical Engineering Publications, London, pp. 283-315.
  • Taira, S. (1962) Lifetime of structures subjected to varying load and temperature. In: Creep in Structures, Hoff, N. J. (ed.), Springer Verlag, Berlin, pp. 96-124.
  • Manson, S. S. and Halford, G. (1967) A method of estimating high-temperature and low-cycle behaviour of materials. In: Thermal and High Strain Fatigue, Monograph and Report Series No. 32, Institute of Metals, London, pp. 154-170.
  • Wood, D. S. (1966) The effect of creep on the high strain fatigue behaviour of a pressure vessel steel, Welding Journal, 45, supplement 92s-96s.
  • Jetter, R. I., Estzergar, E. P., Jakub, M. T., Anderson, WE, Campbell, R. D., Conway, J. B., Corum, J. M., Dalcher, A. W., Gold, M., Lawton, C. W., McConelee, J. E., Nash, C. F., O'Don-nell, W. J., Sebring, EA., Severud, L. K. , Smith, G. V., Snow, A. L. and Wei, B. C. (1974) ASME: Criteria for design of elevated temperature Class 1 components in Section II of the ASME B & PV Code, Subgroup on Elevated temperature Design, ASME, New York, November 1974.
  • Brinkman, C. R., Korth, G. E. and Hobbins, R. R. (1972) Estimates of creep—fatigue interaction in irradiated and uni-rradiated austenitic stainless steels. Nuclear Technol., 16, 297–307.
  • Campbell, R. D. (1971) Creep—fatigue interaction correlation for 304 stainless steel subjected to strain-controlled cycling with hold times at peak strain, ASME Paper No. 71PVP-6, pp. 1–6.
  • RCC-MR, Design and Construction Rules for Mechanical Components of FBR Nuclear Islands, Section 1 — Subsection Z: Technical Appendix A3, AFCEN, France, 2002.
  • Autrusson, B., Cabrillat, M. T., Picker, C. and Bestwick, R. D. W. (1991) Benchmark on creep—fatigue analysis. Paper E0511, Trans. SMIRT 11, Vol. E, pp. 125-129.
  • Skelton, R. P. Comparison of time-summation and strain-sum-mation (ductility exhaustion) methods in creep—fatigue assessment, EPRI Report in preparation.
  • Acker, D., Debaene, J. P., Laue, J. P. and Rose, R. T. On-going developments in design methods and criteria for LMFBR. In: High Temperature Structural Design, Larsson, L. H. (ed.), ESIS 12, Mechanical Engineering Publications, London, p. 61-84.
  • Bestwick, R. D. W. and Buckthorpe, D. E. (1994) Strain based creep—fatigue design rules. Fatigue Fract. Eng. Mater. Struct., 17, 849–859.
  • Ainsworth, R. A. and Budden, P. J. (1994) Design and assess-ment of components subjected to creep. J Strain Anal., 29, 201–208.
  • Skelton, R. P. (1996) Developments in creep—fatigue initiation and growth procedures in high temperature codes. In: Mechan-ical Behaviour of Materials at High Temperatures. Moura Branco, C. et al. (eds.), Kluwer Academic Publishers, pp. 281-297.
  • Hales, R. (1980) A quantitative metallographic assessment of structural degradation of type 316 stainless steel during creep—fatigue. Fatigue Eng. Mater Struct., 3, 339–356.
  • Plumbridge, W. J. (1987) Metallography of high temperature fatigue. In: High Temperature Fatigue: Properties and Pre-diction, Skelton, R. P. (ed.), Elsevier Applied Science, London, pp. 177-228.
  • Yamaguchi, K. and Kanazawa, K. (1979) Crack propagation rates of austenitic steels under high temperature low-cycle fatigue conditions. MetalL Trans., 10A, 1445–1451.
  • Levaillant, C. and Pineau, A. (1982) Assessment of high temperature low cycle fatigue life of austenitic stainless steels by using intergranular damage as a correlating para-meter. In: Low Cycle Fatigue and Life Prediction, Amzallag, C. et al. (eds.), ASTM STP 770, Philadelphia, pp. 169-193.
  • Levaillant, C., Grattier, J., Mottot, M. and Pineau, A. (1988) Creep and creep—fatigue intergranular damage in austenitic stainless steels: discussion of the creep-dominated regime. In: Low Cycle Fatigue, Solomon, H. D. et al. (eds.), ASTM STP 942, Philadelphia, pp. 414-437.
  • Plumbridge, W. J., Priest, R. H. and Ellison, E. G. (1980) Damage formation during fatigue-creep interactions. In: Mechanical Behaviour of Materials 3, Vol. 2, Miller, K. J. and Smith, R. F. (eds.), Pergamon Press, Oxford, pp. 129-139.
  • Cailletaud, G. and Levaillant, C. (1984) Creep—fatigue life prediction: What about initiation? NucL Eng. & Design, 83, 279–292.
  • Miller, D. A., Hamm, C. D. and Phillips, J. L. (1982) A mechan-istic approach to the prediction of creep-dominated failure during simultaneous creep—fatigue. Mater Sci. Eng., 53, 233 — 244.
  • Batte, A. D., Murphy, M. C. and Stringer, M. B. (1978) Highstrain fatigue properties of a 0.5CrMoV turbine casing steel. Metal. Technol., 5, 405–413.
  • Beech, S. M. and Batte, A. D. (1984) An evaluation of the long term creep—fatigue behaviour of a 0.5%CrMoV steam turbine casing steel. In: Proceedings 2nd Int. Conf On Creep and Fracture of Enginering Materials and Structures, Part II, Wilshire, B. and Owen, D. R. J. (eds.), Pineridge Press, Swan-sea, pp. 1015-1027.
  • Skelton, RP. (1987) Cyclic stress-strain properties during high strain fatigue. In: High Temperature Fatigue: Properties and Prediction, Skelton, R. P. (ed.), Elsevier Applied Science, London, pp. 27-112.
  • Skelton, R. P. and Horton, C. A. P. (1999) The effect of thermal ageing and mechanical exposure on low cycle creep—fatigue strength of 316 steel at 625°C. Mater. High Temp., 16, 87–97.
  • Ohashi, Y, Kawai, M. and Momose, T. (1986) Effects of prior plasticity on subsequent creep of type 316 stainless steel at elevated temperature. J Eng. Mater. Technol. (Trans. ASME), 108, 68–74.
  • Kikuchi, S. and Ilschner, B. (1986) Effects of a small pre-strain at high temperatures on the creep behaviour of AISI 304 stainless steel. Scripta Met., 20, 159–162.
  • Monkman, EC. and Grant, N. J. (1956) An empirical relation-ship between rupture life and minimum creep rate in creep-rupture tests. Proc. Am. Soc. Testing Materials, 56, 593–620.
  • Bernard, L., Campo, E. and Quaranta, S. (1982) Creep behaviour of AISI 304 and 316 stainless steels and influence of cold working. In: Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280, The Metals Society, London, pp. 88-93.
  • Kaneko, H., Sakon, T., Kaguchi, H., Nakazawa, T., Fujita, N. and Ueda, H. (1992) Study on fracture mechanism and a life estimation method for low cycle creep—fatigue fracture of type 316 stainless steels. In: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials-3, Rie, K-T. (ed.), Elsevier Applied Science, London, pp. 229-234.
  • Rezgui, B., Petrequin, P. and Mottot, M. (1981) Hold time effects on low cycle fatigue properties of 316L stainless steel at 600°C and 650°C. In: Advances in Fracture Research, Vol. 5, Francois, D. (ed.), Pergamon, London, pp. 2393-2402.
  • Rezgui, B. (1982) Interaction fatigue-fluage-environnement dans un acier inoxydable austenitique Z2 CND 17-13 (Type 316L) A 600 et 650°C: Evolution microstructurale et endomm-agement, PhD Thesis, Universite de Paris-Sud, Centre D'Or-say.
  • Tavassoli, A. A., Mottot, M. and Petrequin, P. (1988) Sequen-tial creep—fatigue interaction in austenitic 316L-SPH stainless steel. Theoret. AppL Fract. Mech., 10, 49— 57.
  • Goodall, I. W., Hales, R. and Walters, D. J. (1981) On consti-tutive relations and failure criteria of an austenitic steel under cyclic loading at elevated temperature. In: Creep of Structures, IUTAM. Ponter, A. R. S. and Hayhurst D. (eds.), Springer-Verlag, Wien, pp. 103-127.
  • Ruggles, M. B. and Ogata, T. (1994) Creep—fatigue criteria and inelastic behaviour of modified 9CrlMo steel at elevated temperatures, Oak Ridge National Laboratory Report ORNL/M-3198, February 1994. [EPRI Research Project 30310 (DOE-ERD-86-5860).]
  • Ellison, E. G. and Paterson, A. J. F. (1976) Creep fatigue inter-actions in a 1CrMoV steel. Proc. Inst. Mech. Engrs., Vol. 190 12/76, 321 —350.
  • Plumbridge, W. J. and Miller, K. J. (1974) Influence of prior fatigue deformation on creep behaviour. In: Creep Strength in Steel and High Temperature Alloys, The Metals Society, London, pp. 50-53.
  • Lai, J. K. and Horton, C. A. P. (1982) Some effects of thermal ageing and grain size on the creep behaviour of a cast AISI type 316 stainless steel. Mater. Sci. Eng., 54, 285–289.
  • Ellis, F. V. and Bynum, J. E. (1983) Evaluation of TP316 stainless steel main line after 125000 hours of service. In: Advances in Life Prediction, ASME, New York, pp. 337-345.
  • Priest, R. H. and Ellison, E. G. (1981) Combined deformation map-ductility exhaustion approach to creep—fatigue analysis. Mater. Sci. Eng., 49, 7–17.
  • Priest, R. H., Beauchamp, D. J. and Ellison, E. G. (1983) Damage during creep—fatigue. In: International Conference on Advances in Life Prediction Methods, ASME, New York, pp. 115-122.
  • Holdsworth, S. R. (1998) Validation of creep—fatigue assess-ment procedures using the results of component-targeted feature-specimen tests. In: Proc. 4th Int. Conf On Low Cycle Fatigue, Rie, K.-T. et al. (eds.), pp. 787-800.
  • Holdsworth, S. R. (2001) Creep—fatigue properties of high temperature turbine steels. Mater. High Temp., 18, 261–265.
  • Skelton, R. P. (1990) Introduction to thermal shock. High Temp. Technol., 8, 75–88.
  • Skelton, R. P. (1983) Crack initiation and growth in simple metal components during thermal cycling. In: Fatigue at High Temperature. Skelton, R. P. (ed.), Applied Science Publishers, London, pp. 1-62.
  • Priest, R. H., Miller, D. A., Gladwin, D. H. and Maguire, J. (1989) The creep—fatigue crack growth behaviour of a 1CrMoV rotor steel. In: Fossil Power Plant Rehabilitation, ASM, Ohio, pp. 31-37.
  • Masuyama, E, Setoguchi, K., Haneda, H. and Nanjo, E (1985) Findings on creep—fatigue damage in pressure parts of long-term service-exposed thermal power plants, Paper No. PVP-MF-84-015, ASME, New York.
  • DeLong, J. F., Siddall, WE, Ellis, F. V., Haneda, H., Tsuchiya, T., Daikoku, T., Masuyama, E and Setoguchi, K. (1984) Operation experiences and reliability evaluation on main steam line pressure parts of Philadelphia Electric. Co., Eddystone No. 1, Mitsubishi Heavy Industries Ltd. Boiler Bulletin MBB-84112E.
  • Priest, R. H., Cairns, P. M., Gladwin, D. N. and Miller, D. A. (1992) Creep—fatigue assessment of a welded steel compo-nent. In: Proc 5th Int. Conf On Creep: Characterisation, Damage and Life Assessments, Lake Buena Vista, Florida, USA, 18-21 May 1992, pp. 423-429.
  • Picker, C. (1992) Materials and structural integrity experience from PFR. Nucl. Energy, 31, 207–219.
  • Skelton, R. P. (2004) Cyclic crack growth properties of service-exposed ferritic steels for use in thermal assessments. Mater High Temp., 21, 129–146.
  • Viswanathan, R. and Stringer, J. (2000) Failure mechanisms of high temperature components in power plants. Trans. ASME Eng. Mater. Technol., 122, 246–255.
  • Viswanathan R. and Bernstein, H. (2001) Creep fatigue problems in the power generation industry. In: Creep & Fracture of Engineering Materials and Structures, Parker, J. D. (ed.), Book No. 0769, The Institute of Materials, London, pp. 545-565.
  • Skelton, R. P. (2006) Thermal shock behaviour in ferritic steels: laboratory tests and comparison with service condi-tions. Mater. High Temp., 23, 39–54.
  • Neate, G. J. (1988) Creep—fatigue crack growth in 0.5CrMoV steel. Mater. Sci. Technol., 4, 524–529.
  • Skelton, R. P. (1988) Fatigue crack growth. In: Characterisa-tion of High Temperature Materials: Mechanical Testing, The Institute of Metals, London, pp. 108-172.
  • Skelton, R. P. (1982) Growth of short cracks during high strain fatigue and thermal cycling. In: Low Cycle Fatigue and Life Prediction, Amzallag, C. et al. (eds.), ASTM STP 770, Philadelphia, pp. 337-381.
  • Argo, H. C., DeLong, J. F., Kadoya, Y, Nakamura, M. and Ando, K. (1984) Eddystone experience on long-term exposed 316ss steam turbine valve components, ASME Paper 84-JPGC-Pwr-15, New York, pp. 1-11.
  • Kimura, K., Fujiyama, K. and Muramatsu, M. (1988) Creep and fatigue life prediction based on the non-destructive assess-ment of material degradation for steam turbine rotors. In: High Temperature Creep-fatigue, Ohtani, R. et al. (eds.), Elsevier Applied Science, London, pp. 247-270.
  • Wareing, J. (1983) Mechanisms of high temperature fatigue and creep-fatigue failure in engineering materials. In: Fatigue at High Temperature, Skelton, R. P. (ed.), Elsevier Applied Science, pp. 135-185.
  • Storesund, J. and Sandström, R. (1990) Interaction of creep damage and low cycle fatigue damage in a 1Cr0.5Mo steel. ISIJ International, 30, 875–884.
  • Raj, R. and Min, B. K. (1978) The effect of cycle shape on creep-fatigue interaction in austenitic stainless steel. In: ASME CSME Pressure Vessel and Piping Conference, Mon-treal, Canada, June 25-30, Paper 78-PVP-89.
  • Batte, A. D., Dawson, R. A. T., Evans, R. B. and Thomas, G. (1985) Reverse-bend testing to obtain long-term endurance data. In: Techniques for High Temperature Fatigue Testing, Sumner, G. and Livesey, V. B. (eds.), Elsevier Applied Science Publishers, London, pp. 97-115.
  • Endo, T. and Sakon, T. (1984) Creep-fatigue life prediction using simple high-temperature low-cycle fatigue testing machines. Metals Technology, 11, 489–496.
  • Yamaguchi, K., Ijima, K., Kobayashi, K. and Nishijima, S. (1991) Creep-fatigue of 1CrMoV steels under simulated cyclic thermal stresses. ISIJ International, 31, 1001–1006.
  • Granacher, J. and Scholz, A. (1996) Creep—fatigue beha-viour under service-type strain cycling. In: Fatigue under Thermal and Mechanical Loading, Bressers, J. and Rémy, L. (eds.), Kluwer Academic Publishers, Dordrecht, pp. 209-214.
  • Scholz, A., Granacher, J. and Berger, C. (1998) Simulation of long term creep-fatigue behaviour by multistage service-type strain cycling. In: Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Rie, K.-T. and Portella, PD. (eds.), Elsevier Science Ltd., pp. 741-746.
  • Granacher, J., Scholz, A., Moehlig, H. and Berger, C. (2000) Heat resistant power plant steels under variable long term conditions. In: Parsons 2000, Advanced Materials for 21st Centwy Turbine and Power Plants, Strang, A. et al. (eds.), IOM Communications Ltd., London, pp. 516-531.
  • Thomas, G. and Dawson, R. A. T. (1980) The effect of dwell period and cycle type on the high strain fatigue properties of a 1CrMoV rotor forging at 500-550°C. In: Engineering Aspects of Creep, Inst. Mech. Eng., London, Vol. 1, Paper C335/80.
  • Shibli, I. A., Starr, E, Viswanathan, R. and Gray, D. (eds.), Internat. Seminar: Cyclic Operation of Power Plant — Techni-cal, Operation and Cost Issues, EPRI Product No. 1004655, ISBN 1-900814-45-5, London, 25-27 June 2001, publ. by Science Reviews.
  • Takahashi, Y. and Yaguchi, M. (2005) Modification of ductility exhaustion-type creep-fatigue life prediction method based on re-definition of creep damage and applica-tion to high chromium steels. J Soc. Mat. Sci. Japan, 54, No. 2, 168–173.
  • Takahashi, Y. (2008) Study on creep-fatigue evaluation procedures for high chromium steels, Part I: Test results and life prediction based on measured stress relaxation. To be published in Int. J. Press. Vessels & Piping. doi:10.1016/j.ijpvp.2007.11.008
  • Skelton, R. P. (1993) Damage factors during high temperature fatigue crack growth. In: Behaviour of Defects at High
  • Cane, B. J. (1996) Surveillance and control of damage in elevated temperature pressure parts in power and process plants. In: 6th Int. Conf Creep and Fatigue, Mechanical Engineering Publications Ltd., London, pp. 473-489.
  • Gooch, D. J. (2003) Remnant creep life prediction in ferritic materials. In: Comprehensive Structural Integrity, Vol. 5: Creep and High Temperature Failure, Saxena, A. (ed.), Else-vier Pergamon, London, pp. 309-359.
  • Starr, E, Castle, J. and Walker, R. (2004) Potential problems in the identification of the root cause of superheater tube failures in 9Cr martensitic alloys. Mater High Temp., 21, 147–160.
  • Rees, C. J., Skelton, R. P. and Metcalfe, E. (1995) Materials comparisons between NF616, HCM12A, and TB12M - II: Thermal fatigue properties. In: New Steels for Advanced Plant up to 620°C, Metcalfe, E. (ed.), EPRI/NP Conference, EPRI, pp. 135-151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.