67
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Evidence for Adaptive Shoulder-Elbow Control in Cyclical Movements With Different Amplitudes, Frequencies, and Orientations

, , , &
Pages 499-515 | Published online: 07 Aug 2010

References

  • Batschelet, E. (1965). Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. Washington, DC: American Institute of Biological Sciences.
  • Bernstein, N. (1967). The co-ordination and regulation of movements. Oxford, England: Pergamon Press.
  • Boashash, B. (1992a). Estimating and interpreting the instantaneous frequency of a signal: I. Fundamentals. Proceedings of the Institute of Electrical and Electronics Engineering, 80, 520-538.
  • Boashash, B. (1992b). Estimating and interpreting the instantaneous frequency of a signal: II. Algorithms and applications. Proceedings of the Institute of Electrical and Electronics Engineering, 80, 540-568.
  • Buneo, C. A., Boline, J., Soechting, J. F., & Poppele, R. E. (1995). On the form of the internal model for reaching. Experimental Brain Research, 104, 467-479.
  • Chatfield, C. (1989). The analysis of time-series: An introduction. London: Chapman and Hall.
  • Cooke, J. D., & Virji-Babul, N. (1995). Preprogramming of muscle activation patterns at the wrist in compensation for elbow reaction torque during planar two-joint arm movements. Experimental Brain Research, 106, 169-176.
  • Dempster, W. T. (1955). Space requirements of the seated operator: Geometrical, kinematic, and mechanical aspects of the body, with special reference to the limbs. Wright-Patterson Air Force Base, OH: U.S. Air Force.
  • Dounskaia, N. (2005). The internal model and the leading joint hypothesis: Implications for control of multi-joint movements. Experimental Brain Research, 166, 1-16.
  • Dounskaia, N., Ketcham, C. J., & Stelmach, G. E. (2002a). Commonalities and differences in control of various drawing movements. Experimental Brain Research, 146, 11-25.
  • Dounskaia, N., Ketcham, C. J., & Stelmach, G. E. (2002b). Influence of biomechanical constraints on horizontal arm movements. Motor Control, 6, 368-389.
  • Dounskaia, N. V., Swinnen, S. P., & Walter, C. B. (2000). A principle of control of rapid multijoint movements: The leading joint hypothesis. In J. M. Winters & P. E. Crago (Eds.), Biomechanics and neural control of posture and movement (pp. 390-404). New York: Springer.
  • Dounskaia, N. V., Swinnen, S. P., Walter, C. B., Spaepen, A. J., & Verschueren, S. M. P. (1998). Hierarchical control of different elbow-wrist coordination patterns. Experimental Brain Research, 121, 239-254.
  • Flash, T., & Hogan, N. (1985). The coordination of arm movement: An experimentally confirmed mathematical model. Journal of Neuroscience, 5, 1688-1703.
  • Galloway, J. C., & Koshland, G. F. (2002). General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements. Experimental Brain Research, 142, 163-180.
  • Ghez, C., & Sainburg, R. L. (1995). Proprioceptive control of interjoint coordination. Canadian Journal of Physiology and Pharmacology, 73, 273-284.
  • Gomi, H., & Kawato, M. (1997). Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biological Cybernetics, 76, 163-171.
  • Gordon, J., Ghilardi, M. F., Cooper, S. E., & Ghez, C. (1994). Accuracy of planar reaching movements: II. Systematic extent errors resulting from inertial anisotropy. Experimental Brain Research, 99, 112-130.
  • Gordon, J., Ghilardi, M. F., & Ghez, C. (1994). Accuracy of planar reaching movements: I. Independence of direction and extent variability. Experimental Brain Research, 99, 97-111.
  • Gottlieb, G. L., Song, Q., Almeida, G. L., Hong, D.-A., & Corcos, D. (1997). Directional control of planar human arm movement. Journal of Neurophysiology, 78, 2985-2998.
  • Grasso, R., Bianchi, L., & Lacquaniti, F. (1998). Motor patterns of human gait: Backward versus forward locomotion. Journal of Neurophysiology, 80, 1868-1885.
  • Gribble, P. L., & Ostry, D. J. (1999). Compensation for interaction torque during single and multijoint limb movements. Journal of Neurophysiology, 82, 2310-2326.
  • Gribble, P. L., & Scott, S. H. (2002, June 27). Overlap of internal models in motor cortex for mechanical loads during reaching. Nature, 417, 938-941.
  • Hasan, Z., & Enoka, R. M. (1985). Isometric torque-angle relationship and movement-related activity of human elbow flexors: Implications for the equilibrium-point hypothesis. Experimental Brain Research, 59, 441-450.
  • Hollerbach, J. M., & Flash, T. (1982). Dynamic interactions between limb segments during planar arm movements. Biological Cybernetics, 44, 67-77.
  • Hoy, M. G., & Zernicke, R. F. (1986). The role of intersegmental dynamics during rapid limb oscillations. Journal of Biomechanics, 19, 867-877.
  • Hoy, M. G., Zernicke, R. F., & Smith, J. L. (1985). Constraining roles of inertial and muscle moments at knee and ankle during pawshake response. Journal of Neurophysiology, 54, 1282-1294.
  • Karst, G. M., & Hasan, Z. (1991a). Initiation rules for planar, two-joint arm movements: Agonist selection for movements throughout the work space. Journal of Neurophysiology, 66, 1579-1593.
  • Karst, G. M., & Hasan, Z. (1991b). Timing and magnitude of electromyographic activity for two-joint movements in different directions. Journal of Neurophysiology, 66, 1594-1604.
  • Kelso, J. A. S., Scholz, J. P., & Schoner, G. S. (1986). Nonequilibrium phase transitions in coordinated biological motion: Critical fluctuations. Physics Letters A, 118, 279-284.
  • Koshland, G. F., Marasli, B., & Arabyan, A. (1999). Directional effects of changes in muscle torques on initial path during simulated reaching movements. Experimental Brain Research, 128, 353-368.
  • Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2, 1026-1031.
  • Lacquaniti, F., Soechting, J. F., & Terzuolo, C. (1982). Some factors pertinent to the organization and control of arm movements. Brain Research, 252, 394-397.
  • Latash, M. L., Aruin, A. S., & Zatsiorsky, V. M. (1999). The basis of a simple synergy: Reconstruction of joint equilibrium trajectories during unrestrained arm movements. Human Movement Science, 18, 3-30.
  • Levin, O., Ouamer, M., Steyvers, M., & Swinnen, S. P. (2001). Directional tuning effects during cyclical two-joint arm movements in the horizontal plane. Experimental Brain Research, 141, 471-484.
  • Levin, O., Wenderoth, N., Steyvers, M., & Swinnen, S. P. (2003). Directional invariance during loading-related modulations of muscle activity: Evidence for motor equivalence. Experimental Brain Research, 148, 62-76.
  • Li, Y., Levin, O., Forner-Cordero, A., & Swinnen, S. P. (2005a). Effects of interlimb and intralimb constraints on bimanual shoulder-elbow and shoulder-wrist coordination. Journal of Neurophysiology, 94, 2139-2149.
  • Li, Y., Levin, O., Forner-Cordero, A., & Swinnen, S. P. (2005b). Interactions between interlimb and intralimb coordination during the performance of bimanual multijoint movements. Experimental Brain Research, 163, 515-526.
  • Mardia, K. V. (1972). Statistics of directional data. London: Academic Press.
  • Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks 9, 1265-1279.
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97-113.
  • Rijntjes, M., Dettmers, C., Buchel, C., Kieble, S., Frackowiak, J., & Cornelius, W. (1999). A blueprint for movement: Functional and anatomical representations in the human motor system. Journal of Neuroscience, 15, 8043-8048.
  • Sainburg, R. L., Ghez, C., & Kalakanis, D. (1999). Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. Journal of Neurophysiology, 81, 1045-1056.
  • Sainburg, R. L., & Kalakanis, D. (2000). Differences in control of limb dynamics during dominant and nondominant arm reaching. Journal of Neurophysiology, 83, 2661-2675.
  • Schmidt, R. A., & Lee, T. D. (1982). Motor control and learning: A behavioral emphasis. Champaign, IL: Human Kinetics.
  • Scott, S. H. (2005). Conceptual frameworks for interpreting motor cortical function: New insights from a planar multiple-joint paradigm. In A. Riehle & E. Vaadia (Eds.), Motor cortex in voluntary movements (pp. 157-180). London: CRC Press.
  • Scott, S. H., & Kalaska, J. F. (1997). Reaching movements with similar hand paths but different arm orientations: I. Activity of individual cells in motor cortex. Journal of Neurophysiology, 77, 826-852.
  • Shadmehr, R., & Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience, 14, 3208-3224.
  • Thoroughman, K. A., & Shadmehr, R. (1999). Electromyographic correlates of learning an internal model of reaching movements. Journal of Neuroscience, 19, 8573-8588.
  • Virji-Babul, N., & Cooke, J. D. (1995). Influence of joint interactional effects on the coordination of planar two-joint movements. Experimental Brain Research, 103, 451-459.
  • Wadman, W. J., Van der Gon, D. J. J., & Derksen, R. J. A. (1980). Muscle activation patterns for fast goal-directed arm movements. Journal of Human Movement Studies, 6, 19-37.
  • Weijs, W. A., Sugimura, T., & van Ruijven, L. J. (1999). Motor coordination in a multi-muscle system as revealed by principle components analysis of electromyographic variation. Experimental Brain Research, 127, 233-243.
  • Wing, A. M. (2000). Motor control: Mechanisms of motor equivalence in handwriting. Current Biology, 10, R245-R248.
  • Winter, D. A., Fuglevand, A. J., & Archer, S. E. (1994). Crosstalk in surface electromyography: Theoretical and practical elements. Journal of Electromyography and Kinesiology, 4, 15-26.
  • Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995, September 29). An internal model for sensorimotor integration. Science, 269, 1880-1882.
  • Zajac, F. E. (1989). Muscle and tendon: Properties, models, scaling and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering, 17, 359-411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.