2,751
Views
90
CrossRef citations to date
0
Altmetric
Review Articles

The impact of multiple infections on wild animal hosts: a review

, DMV, PhD & , PhD
Article: 7346 | Received 02 Jun 2011, Accepted 25 Aug 2011, Published online: 19 Sep 2011

References

  • Crawley MJ. The population biology of predators, parasites and diseases. Blackwell. London, 1992
  • Pullan R, Brooker S. The health impact of polyparasitism in humans: are we under- estimated the burden of parasitic diseases?. Parasitology. 2008; 135: 783–94. 10.3402/iee.v1i0.7346.
  • Rigaud T, Perrot-Minnot MJ, Brown MJF. Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Proc Roy Soc Lond B. 2010; 277: 3693–702. 10.3402/iee.v1i0.7346.
  • Tompkins DM, Dunn AM, Smith MJ, Telfer S. Wildlife diseases: from individuals to ecosystems. J Anim Ecol. 2010; 80: 19–38. 10.3402/iee.v1i0.7346.
  • Poulin R. Evolutionnary Ecology of parasites2nd ed. Princeton University Press. Princeton, 2007
  • Petney TN, Andrews RM. Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol. 1998; 28: 377–93. 10.3402/iee.v1i0.7346.
  • Bordes F, Morand S. Parasite diversity: an overlooked metric of parasite pressures?. Oikos. 2009; 118: 801–6. 10.3402/iee.v1i0.7346.
  • de Meeûs T, Renaud F. Parasites within the new phylogeny of eukaryotes. Trends Par. 2002; 18: 247–51. 10.3402/iee.v1i0.7346.
  • Nunn C, Altizer S, Jones KE, Sechrest W. Comparative tests of parasite species richness in primates. Am Nat. 2003; 162: 597–614. 10.3402/iee.v1i0.7346.
  • Poulin R, Morand S. Parasite biodiversity. Smithsonian Institution Press. Washington, 2004
  • Krasnov BR, Korallo-Vinarskaya NP, Vinarsky M-V, Shenbrot GI, Mouillot D, Poulin R. Searching for general patterns in parasite ecology: host identity versus environmental influence on gamasid mite assemblages in small mammals. Parasitology. 2008; 135: 229–42.
  • Bordes F, Morand S. Helminth species diversity of mammals: parasite species richness is a host species attribute. Parasitology. 2008; 135: 1701–5. 10.3402/iee.v1i0.7346.
  • Poulin R. Are they general laws in parasite ecology?. Parasitology. 2007; 134: 763–76. 10.3402/iee.v1i0.7346.
  • Guégan J-F, Morand S, Poulin R. Are there general laws in parasite community ecology? The emergence of spatial parasitology and epidemiology. Parasitism and ecosystems. Thomas F, Guégan J-F, Renaud FOxford University Press. Oxford, 2004; 22–42.
  • Morand S, Krasnov BR. Why applying ecology law to epidemiology?. Trends Par. 2008; 24: 304–9. 10.3402/iee.v1i0.7346.
  • Cox FEG. Concomitant infections, parasites and immune responses. Parasitology. 2001; 122: 23–38. 10.3402/iee.v1i0.7346.
  • Graham AL. Ecological rules governing helminth-microparasite coinfection. PNAS. 2008; 105: 566–70. 10.3402/iee.v1i0.7346.
  • Behnke JM, Eira C, Rogan M, Gilbert FS, Torres J, Miquel J, Lewis JW. Helminth species richness in wild wood mice, Apodemus sylvaticus, is enhanced by the presence of the intestinal nematode Heligmosomoides polygyrus. Parasitology. 2009; 136: 793–804. 10.3402/iee.v1i0.7346.
  • Fenton A, Viney ME, Lello J. Detecting interspecific macroparasites interactions from ecological data: patterns and process. Ecol Let. 2010; 13: 606–15. 10.3402/iee.v1i0.7346.
  • Telfer S, Lambin X. Birtles R, Beldomenico P, Burthe S, Paterson S, Begon M. Species interactions in a parasite community drive infection risk in a wildlife population. Science. 2010; 330: 243–46. 10.3402/iee.v1i0.7346.
  • Gause WC, Urban JF, Stadecker MJ. The immune responses to parasitic helminths: insights from murine models. Trends Immunol. 2003; 24: 269–77. 10.3402/iee.v1i0.7346.
  • Benwitch Z, Kalinkovich A, Weisman Z, Borkow G, Beyers N, Beyers AD. Can eradication of helminthic infections change the face of AIDS and Tuberculosis?. Immunol Today. 1999; 20: 485–87. 10.3402/iee.v1i0.7346.
  • Druilhe P, Tall A, Sokhna C. Worms can worsen malaria: towards a new means to roll back malaria?. Trends Parasitol. 2005; 21: 359–62. 10.3402/iee.v1i0.7346.
  • Sangweme D, Shiff C, Kumar N. Plasmodium yoelii: Adverse outcome of non-lethal P. yoelii malaria during co-infection with Schistosoma mansoni in BALB/c mouse model. Exp Parasotol. 2009; 122: 254–59. 10.3402/iee.v1i0.7346.
  • Kamya MR, Gasasira AF, Yeka A, Bakyaita N, Nsobyra SL, Francis D, et al.. Effects of HIV-1 infection on antimalarial treatment outcomes in Uganda: apopulation-based study. J Inf Dis. 2006; 193: 9–15. 10.3402/iee.v1i0.7346.
  • Otieno RO, Ouma C, Ong'echan JM, Keller CC, Were T, Waindia EN, et al.. Increased severe anemia in HIV-1-exposed and HIV-1-positive infants and children during acute malaria. AIDS. 2006; 20: 275–80. 10.3402/iee.v1i0.7346.
  • Ezeamama AE, Mc Garvey S, Acosta LP, Zierler S, Manalo DL, Wu HW, et al.. The synergistic effects of concomitant schistosomiasis, hookworm and Trichuris infections on children's anaemia burden. PLOS Neglect Trop Dis. 2008; 2: 1–5. 10.3402/iee.v1i0.7346.
  • Mosquera J, Adler FR. Evolution of virulence: a unified framework for coinfections and superinfection. J Theor Biol. 1998; 195: 293–313. 10.3402/iee.v1i0.7346.
  • Taylor LH, Mackinnon MJ, Read AF. Virulence of mixed-clone and single-clone infections of the rodent malaria Plasmodium Chabaudi. Evolution. 1998; 52: 583–91. 10.3402/iee.v1i0.7346.
  • Schjorring S, Koella JC. Sub-lethal effects of pathogens can lead to the evolution of lower virulence in multiple infections. Proc R Soc Lond B. 2003; 270: 189–93. 10.3402/iee.v1i0.7346.
  • Ben-Ami F, Mouton L, Ebert D. The effects of multiple infections on the expression and evolution of virulence in a Daphnia-endoparasite system. Evolution. 2008; 62: 1700–11. 10.3402/iee.v1i0.7346.
  • Davies CM, Fairbrother E, Webster JP. Mixed strain schistosome infections of snails and the evolution of parasite virulence. Parasitology. 2002; 124: 31–8. 10.3402/iee.v1i0.7346.
  • Holmstad PR, Jensen KH, Skorping A. Ectoparasite intensities are correlated with endoparasite infection loads in willow ptarmigan. Oikos. 2008; 117: 515–20. 10.3402/iee.v1i0.7346.
  • Graham AL, Cattadori IM, Lloyd-Smith JO, Bjørnstad ON. Transmission consequences of coinfection: cytokines write large?. Trends in Parasitol. 2007; 23: 284–91. 10.3402/iee.v1i0.7346.
  • Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003; 102: 783–88. 10.3402/iee.v1i0.7346.
  • Mahmoud AA, Woodruff AW. Mechanisms involved in the anaemia of schistosomiasis. Trans R Soc Trop Med Hyg. 1972; 66: 75–84. 10.3402/iee.v1i0.7346.
  • Babatunde OA, Clarkson AB, Shear HL. Pathogenesis of anemia in Trypanosoma brucei-infected mice. Inf Immun. 1972; 36: 1060–68.
  • Graham AL, Allen JE, Read A. Evolutionary causes and consequences of immunopathology. Annu Rev Ecol Evol Syst. 2005; 36: 373–97. 10.3402/iee.v1i0.7346.
  • Graham AL. When T-helpers cells don't help: immunopathology during concomitant infections. Quart Rev Biol. 2002; 77: 409–54. 10.3402/iee.v1i0.7346.
  • Graham AL, Allen JE, Read A. Malaria-filaria coïnfection in mice makes malaria more severe unless filarial infection achieves patency. J Infect Dis. 2005; 191: 410–21. 10.3402/iee.v1i0.7346.
  • Graham AL, Hayward AD, Watt KA, Pilkington JG, Pemberton JM, Nussey DH. Fitness correlates of heritable variation in antibody responsiveness in a wild mammal. Science. 2010; 330: 662–65. 10.3402/iee.v1i0.7346.
  • Walsh PK, Brady MT, Finlay CM, Boon L, Kingston H, Mills G. Infection with a helminth parasite attenuates autoimmunity through TGF--mediated suppression of Th17 and Th1 responses. J Immunol. 2009; 183: 1577–86. 10.3402/iee.v1i0.7346.
  • Maizels RM, Balic A, Gomez-Escobar N, Nair M, Taylor MD, Allen JE. Helminth parasites-masters of regulation. Imm Rev. 2004; 201: 89–116. 10.3402/iee.v1i0.7346.
  • Holmstad PR, Hudson PJ, Skorping A. The influence of a parasite community of a host population: a longitudinal study on willow ptarmigan and their parasites. Oikos. 2005; 111: 377–91. 10.3402/iee.v1i0.7346.
  • Davidar P, Morton ES. Are multiple infections more severe for purple martins than single infections?. Auk. 2006; 123: 141–47. 10.3402/iee.v1i0.7346.
  • del Cerro S, Merino S, Martinez de la Puente J, Lobato E, Ruiz de Castaneda R, Rivero de Aguilar J, et al.. Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caerulus). Oecologia. 2010; 162: 825–35. 10.3402/iee.v1i0.7346.
  • Lello J, Boag B, Hudson PJ. The effects of single and concomitant infections on condition and fecundity of the wild rabbits (Oryctolagus cuniculus). Int J Parasitol. 2005; 35: 1509–15. 10.3402/iee.v1i0.7346.
  • Jolly D, Messier F. The effect of bovine tuberculosis and brucellosis on reproduction and survival of wood bison in Wood Buffalo National Park. J Anim Ecol. 2005; 74: 543–51. 10.3402/iee.v1i0.7346.
  • Jolles AE, Ezenwa V, Etienne RS, Turner WC, Olff H. Interactions between macroparasites and microparasites drive infection patterns in free -ranging African buffalo. Ecology. 2008; 89: 2239–50. 10.3402/iee.v1i0.7346.
  • Munson L, Terio K, Kock R, Mlengeya T, Roelke ME, Dubovi E, et al.. Climate extremes promote fatal co-infections during Canine distemper Epidemics in African Lions. Plos One. 2008; 3: 1–6. 10.3402/iee.v1i0.7346.
  • Ezenwa VO, Etienne RS, Luikart G, Beja-Pereira A, Jolles AE. Hidden consequences of living in a wormy world: nematode-induced immune suppression facilitates tuberculosis invasion in African Buffalo. Am Nat. 2010; 176: 613–24. 10.3402/iee.v1i0.7346.
  • Alzaga V, Vicente J, Villanua D, Acevedo P, Casas F, Gortazar C. Body condition and parasite intensity correlates with escape capacity in Iberian hares. Behav Ecol Soc. 2008; 62: 769–75. 10.3402/iee.v1i0.7346.
  • Harms G, Feldmeier H. HIV coinfection and tropical parasitic diseases-deleterious interactions in both directions?. Trop Med Int Health. 2002; 7: 479–88. 10.3402/iee.v1i0.7346.
  • Sokna C, Le Hesran JY, Mbaye PA, Akiana J, Camara P, Diop M. Increase of malaria attacks among children presenting concomitant infections by Schistosoma mansoni in Senegal. Malaria J. 2004; 117: 597–610.
  • Wegner KM, Reusch TBH, Kalbe M. Multiple parasites are driving Major Histocompatibility Complex polymorphism in the wild. J Evol Biol. 2003; 16: 224–32. 10.3402/iee.v1i0.7346.
  • Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool. 2005; 2: 16. 10.3402/iee.v1i0.7346.
  • Prugnolle F, Manica F, Charpentier M, Guégan J-F, Guernier V, Balloux F. Pathogen-driven selection and worldwide HLA class I diversity. Current Biol. 2005; 15: 1022–27. 10.3402/iee.v1i0.7346.
  • Goüy de Bellocq J, Charbonnel N, Morand S. Coevolutionary relationship between helminth diversity and MHC class II polymorphism in rodents. J Evol Biol. 2008; 21: 1144–50. 10.3402/iee.v1i0.7346.
  • Tollenaere C, Bryja J, Galan M, Cadet P, Deter J, Chaval Y, et al.. Multiple parasites mediate balancing selection at two MHC class II genes in the fossorial water vole: insights from multivariate analyses and population genetics. J Evol Biol. 2008; 21: 1307–20. 10.3402/iee.v1i0.7346.
  • Meyer-Lucht Y, Otten C, Püttker T, Pardini R, Metzger JP, Sommer S. Variety matters: adaptive genetic diversity and parasitic load in two mouse opossums from the Brazilian Atlantic coast. Conserv Genet. 2010; 11: 2001–13. 10.3402/iee.v1i0.7346.
  • šimková A, Ottovà E, Morand S. MHC variability, life traits and parasite diversity of European Cyprinid fish. Evol Ecol. 2006; 20: 465–67.
  • Dionne M, Miller KM, Dodson JJ, Caron F, Bernatchez L. Clinal variation in MHC diversity with temperature: evidence for the role of host-pathogens interaction on local adaptation in Atlantic salmon. Evolution. 2007; 61: 2154–64. 10.3402/iee.v1i0.7346.
  • Harf R, Sommer S. Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol Ecol. 2005; 14: 85–91. 10.3402/iee.v1i0.7346.
  • Meyer-Lucht Y, Sommer S. MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol. 2005; 14: 2233–43. 10.3402/iee.v1i0.7346.
  • Lenz T, Wells K, Pfeiffer M, Sommer S. Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the Long-tailed (Leopoldamys sabanus). BMC Evol Biol. 2009; 9: 269. 10.3402/iee.v1i0.7346.
  • Wegner KM, Kalbe M, Kurtz J, Teusch TBH, Milinski M. Parasite selection for immunogenetic optimality. Science. 2003; 301: 1343. 10.3402/iee.v1i0.7346.
  • Rolff J, Siva-Jothy MT. Invertebrate Ecological Immunity. Science. 2003; 301: 473–75. 10.3402/iee.v1i0.7346.
  • Wegner KM, Kalbe M, Milinski M, Reusch TBH. Mortality selection during the 2003 European heat wave in three-spined sticklebacks: effects of parasites and MHC genotype. BMC Evol Biol. 2008; 8: 124. 10.3402/iee.v1i0.7346.
  • Kloch A, Babik W, Bajer A, Sinski E, Radwan J. Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank voles Myodes glareolus. Mol Ecol. 2010; 19: 255–65. 10.3402/iee.v1i0.7346.
  • Stjernman M, Raberg L, Nilsson JA. Maximum host survival at intermediate parasite infection intensities. Plos One. 2008; 3: 1–3. 10.3402/iee.v1i0.7346.
  • Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, et al.. Common West African HLA antigens are associated with protection from severe malaria. Nature. 1991; 352: 595–600. 10.3402/iee.v1i0.7346.
  • Hill AV. The genomics and genetics of human infectious diseases susceptibility. Annu Rev Genomics Hum Genet. 2001; 2: 373–400. 10.3402/iee.v1i0.7346.
  • Paterson S, Wilson K, Pemberton JM. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population. PNAS USA. 1998; 95: 3714–19. 10.3402/iee.v1i0.7346.
  • Schwensow N, Dausmann K, Eberle M, Fietz J, Sommer S. Functional associations of similar MHC alleles and shared parasite species in two sympatric lemurs. Inf Gen Evol. 2010; 10: 662–68. 10.3402/iee.v1i0.7346.
  • Oppelt C, Starkloff A, Rausch P, Von Holst D, Rödel H. Major histocompatibility complex variation and age-specific endoparasite load in subadult European rabbits. Mol Ecol. 2010; 19: 4155–67. 10.3402/iee.v1i0.7346.
  • Oliver MK, Telfer S, Piertney SB. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proc R Soc Lond B. 2009; 276: 1119–28. 10.3402/iee.v1i0.7346.
  • Radwan J, Biedrzycka A, Babik W. Does reduced MHC diversity decrease viability of vertebrate populations?. Biol Cons. 2009; 143: 537–44. 10.3402/iee.v1i0.7346.
  • Smith S, Mang T, Goüy de Bellocq J, Schaschl H, Zeiotlhofer C, Hackländer K, Suchentrunk F. Homozygoty at a class II MHC locus depresses female reproductivity ability in European brown hares. Mol Ecol. 2010; 19: 4131–43. 10.3402/iee.v1i0.7346.
  • Magnanou E, Fons R, Feliu C, Morand S. Physiological responses of insular wild black rat (Rattus rattus) to natural infection by the digenean trematode Fasciola hepatica. Parasitol Res. 2005; 99: 97–101. 10.3402/iee.v1i0.7346.
  • Khokhlova IS, Krasnov BR, Kam M, Burdelova NI, Degen AA. Energy cost of ectoparasitism: the flea Xenopsylla ramesis on the desert gerbil Gerbillus dasyurus. J Zool Lond. 2002; 258: 349–54. 10.3402/iee.v1i0.7346.
  • Devevey G, Niculita-Herzel H, Biollaz F, Yvon C, Chapuisat M, Christe P. Developmental, metabolic and immunological cost of flea infestation in the common vole. Funct Ecol. 2008; 22: 1091–98. 10.3402/iee.v1i0.7346.
  • Demas GE. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. Am J Physiol. 1997; 273: 1631–37.
  • Martin LB, Scheuerlein A, Wikelski M. Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs?. Proc R Soc Lond B. 2003; 270: 153–58. 10.3402/iee.v1i0.7346.
  • White CR, Seymour RS. Does Basal Metabolic Rate contain a useful signal? Mammalian BMR allometry and correlation with a selection of physiological, ecological and life-history variables. Physiol Bioch Zool. 2004; 77: 929–41. 10.3402/iee.v1i0.7346.
  • Morand S, Harvey PH. Mammalian metabolism, longevity and parasite species richness. Proc R Soc Lond B. 2000; 267: 1999–2003. 10.3402/iee.v1i0.7346.
  • Korallo N, Vinarski MV, Krasnov BR, Shenbrot GI, Mouillot D, Poulin R. Are there general rules governing parasite diversity? Small mammalian hosts and gamasid mite assemblages. Div Distr. 2007; 13: 353–60. 10.3402/iee.v1i0.7346.
  • Preston BT, Capellini I, McNamara P, Barton RA, Nunn CL. Parasite resistance and the adaptative significance of sleep. BMC Evol Biol. 2009; 9: 1–9. 10.3402/iee.v1i0.7346.
  • Bordes F, Morand S. Coevolution between helminth diversity and basal immune investment in mammals: cumulative effects of polyparasitism?. Parasitol Res. 2009; 106: 33–37. 10.3402/iee.v1i0.7346.
  • Møller AP, Merino S, Brown CR, Robertson RJ. Immune defence and host sociality: a comparative study of swallows and martins. Am Nat. 2001; 152: 136–45.
  • šimková A, Lafond T, Ondrackova M, Juralda P, Ottovà E, Morand S. Parasitism, life history traits and immune defence in cyprinid fish from Central Europe. BMC Evol Biol. 2008; 8: 1–11. 10.3402/iee.v1i0.7346.
  • Neuhaus P. Parasite removal and its impact on litter size and body condition in Columbian ground squirrels (Spermophilus columbianus). Biol Lett. 2003; 270: 213–15.
  • Knowles SCL, Palinauskas V, Sheldon BC. Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J Evol Biol. 2009; 29: 57–569.
  • Arrierero E, Møller A. Host ecology and life history traits associated with blood parasite species richness in birds. J Evol Biol. 2008; 21: 1504–13. 10.3402/iee.v1i0.7346.
  • Taylor WA, Boomker J, Krecek RC, Skinner JD, Watermeyer R. Helminths in sympatric populations of mountain reedbuck (Redunca fulvorufula) and gray Rhebok (Pelea capreolus) in South Africa. J Parasitol. 2005; 91: 863–70. 10.3402/iee.v1i0.7346.
  • Kilpatrick AM, Altizer S. Disease Ecology. Nature Education Knowledge. 2010; 1: 13.
  • Lloyd-Smith JO, Schreiber SJ, Kopp PE. Getz WM. Super- spreading and the effect of individual variation on disease emergence. Nature. 2005; 438: 355. 10.3402/iee.v1i0.7346.
  • Li YG, Yu ITS, Xu PC, Lee JHW, Wong TW, Ooi PL, et al.. Predicting super spreading events during the 2003 severe acute respiratory syndrome epidemics in Hong Kong and Singapore. Am J Epidemiol. 2004; 160: 719–28. 10.3402/iee.v1i0.7346.
  • Ferrari N, Cattadori IM, Nespereira J, Rizzoli A, Hudson P. The role of host sex in parasite dynamics: field experiments on the yellow- necked mouse Apodemus flavicollis. Ecol Let. 2004; 7: 88–94. 10.3402/iee.v1i0.7346.
  • Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, et al.. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010; 468: 647–52. 10.3402/iee.v1i0.7346.
  • Råberg L, Graham AL, Read AF. Decomposing health: tolerance and resistance to parasites in animals. Phil Trans Roy Soc Lond B. 2009; 364: 37–49. 10.3402/iee.v1i0.7346.
  • Råberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science. 2007; 318: 812–14. 10.3402/iee.v1i0.7346.
  • Nakamura S, Yang C-S, Sakon N, Ueda M, Tougan T, Yamashita A, Goto N, Takahashi K, Yasunaga T, Ikuta K, Mizutani T, Okamoto Y, Tagami M, Morita M, Maeda N, Kawai J, Hayashizaki Y, Nagai Y, Horii T, Iida T, Nakaya T. Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS ONE. 2009; 4: e4219. 10.3402/iee.v1i0.7346.
  • Morand S, Poulin R. Density, body mass and parasite species richness of terrestrial mammals. Evol Ecol. 1998; 12: 717–27. 10.3402/iee.v1i0.7346.
  • Arneberg P. Host population density and body mass as determinants of species richness in parasite communities: comparative analyses of directly transmitted nematodes of mammals. Ecography. 2002; 25: 88–94. 10.3402/iee.v1i0.7346.
  • Stanko M, Miklisová D, Goüy de Bellocq J, Morand S. Mammal density and patterns of ectoparasite species richness and abundance. Oecologia. 2002; 131: 289–95. 10.3402/iee.v1i0.7346.
  • Torres J, Miquel J, Casanova JC, Ribas A, Feliu C, Morand S. Parasite species richness of Iberian carnivores: influences of host density and range distribution. Biodiv Cons. 2006; 15: 4619–32. 10.3402/iee.v1i0.7346.
  • Lindenfors P, Nunn CL, Jones KE, Cunningham AA, Sechrest W, Gittleman JL. Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Glob Ecol Biogeo. 2007; 1: 1–14.
  • Feliu C, Renaud F, Catzeflis F, Durand P, Hugot J-P, Morand S. A comparative analysis of parasite species richness of Iberian rodents. Parasitology. 1997; 115: 453–66. 10.3402/iee.v1i0.7346.
  • Krasnov BR, Shenbrot GI, Khokhlova I, Degen AA. Flea species richness and parameters of host body, host geography and host ‘milieu’. J Anim Ecol. 2004; 73: 1121–28. 10.3402/iee.v1i0.7346.
  • Lohm J, Grahn M, Langefors Å Andersen Ø Storset A, von Schantz T. Experimental evidence for major histocompatibility complex allele-specific resistance to a bacterial infection. Proc R Soc Lond B. 2002; 269: 2029–33. 10.3402/iee.v1i0.7346.