2,063
Views
43
CrossRef citations to date
0
Altmetric
Original Research Articles

Extracellular vesicles from a muscle cell line (C2C12) enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34)

, , &
Article: 22865 | Received 19 Sep 2013, Accepted 28 Jan 2014, Published online: 19 Feb 2014

References

  • Frank E, Jansen JK, Lomo T, Westgaard RH. The interaction between foreign and original motor nerves innervating the soleus muscle of rats. J Physiol. 1975; 247: 725–43.
  • Sanes JR, Lichtman JW. Development of the vertebrate neuromuscular junction. Annu Rev Neurosci. 1999; 22: 389–442.
  • Wallenius V, Hisaoka M, Helou K, Levan G, Mandahl N, Meis-Kindblom JM et al. Overexpression of the hepatocyte growth factor (HGF) receptor (Met) and presence of a truncated and activated intracellular HGF receptor fragment in locally aggressive/malignant human musculoskeletal tumors. Am J Pathol. 2000; 156: 821–9.
  • Jennische E, Ekberg S, Matejka GL. Expression of hepatocyte growth factor in growing and regenerating rat skeletal muscle. Am Phys Soc. 1993; 265: 122–8.
  • Yamaguchi A, Ishii H, Morita I, Oota I, Takeda H. mRNA expression of fibroblast growth factors and hepatocyte growth factor in rat plantaris muscle following denervation and compensatory overload. Eur J Physiol. 2004; 448: 539–46.
  • Tonra JR, Curtis R, Wong V, Cliffer KD, Park JS, Timmes A et al. Axotomy upregulates the anterograde transport and expression of brain-derived neurotrophic factor by sensory neurons. J Neurosci. 1998; 18: 4374–83.
  • Lie D, Weis J. GDNF expression is increased in denervated human skeletal muscle. Neurosci Lett. 1998; 250: 87–90.
  • Wehrwein EA, Roskelley EM, Spitsbergen JM. GDNF is regulated in an activity-dependent manner in rat skeletal muscle. Muscle Nerve. 2002; 26: 206–11.
  • Zhao C, Veltri K, Li S, Bain JR, Fahnestock M. NGF, BDNF, NT-3, and GDNF mRNA expression in rat skeletal muscle following denervation and sensory protection. J Neurotrauma. 2004; 21: 1468–78.
  • Lawoko G, Tagerud S. High endocytotic activity occurs periodically in the endplate region of denervated mouse striated muscle fibers. Exp Cell Res. 1995; 219: 598–603.
  • Libelius R, Tagerud S, Libelius R, Thesleff S. Neuromuscular junction. Lysosomes in skeletal muscle. 1989; Amsterdam: Elsevier. 481–5.
  • Thesleff S, Libelius R, Tagerud S, Rose CR, Jones R, Vrbova G. Some aspects of long term regulations of nerve–muscle relations. Neuromuscular stimulation: basic concepts and clinical applications. 1989; New York: Demos. 27–36.
  • deLapeyriere O, Henderson CE. Motoneuron differentiation, survival and synaptogenesis. Curr Opin Genet Dev. 1997; 7: 642–50.
  • Henderson CE, Bloch-Gallego E, Camu W, Gouin A, Lemeulle C, Mettling C et al. Motoneuron survival factors: biological roles and therapeutic potential. Neuromusc Disord. 1993; 3: 455–8.
  • Magnusson C, Svensson A, Christerson U, Tagerud S. Denervation-induced alterations in gene expression in mouse skeletal muscle. Eur J Neurosci. 2005; 21: 577–80.
  • Taylor AR, Gifondorwa DJ, Newbern JM, Robinson MB, Strupe JL, Prevette D et al. Astrocyte and muscle-derived secreted factors differentially regulate motoneuron survival. J Neurosci. 2007; 27: 634–44.
  • Vrbova G, Gordon T, Jones R, Vrbova G, Gordon T, Jones R. Nerve regeneration and muscle reinnervation. Nerve–muscle interaction. 1995; London: Chapman and Hall. 197–235.
  • Witwer KW, Buzas EI, Bemis LT, Bora A, Lässer C, Lötvall J et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013; 2 20360, doi: http://dx.doi.org/10.3402/jev.v2i0.20360.
  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9: 654–9.
  • van der Vos KE, Balaj L, Skog J, Breakefield XO. Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol. 2011; 31: 949–59.
  • Thery C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011; 3
  • Smalheiser NR. Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct. 2007; 2: 35.
  • Lopez-Verrilli MA, Court FA. Transfer of vesicles from Schwann cells to axons: a novel mechanism of communication in the peripheral nervous system. Front Physiol. 2012; 3: 1–6.
  • Guescini M, Guidolin D, Vallorani L, Casadei L, Gioacchini AM, Tibollo P et al. C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res. 2010; 316: 1977–84.
  • Lopez-Verrilli MA, Picou F, Court FA. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia. 2013; 61: 1795–806.
  • Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008; 8: 4083–99.
  • El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C et al. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc. 2012; 7: 2112–26.
  • Dehmelt L, Poplawski G, Hwang E, Halpain S. NeuriteQuant: an open source toolkit for high content screens of neuronal morphogenesis. BMC Neurosci. 2011; 12: 1–13.
  • Madison RD, Robinson GA, Chadaram SR. The specificity of motor neurone regeneration (preferential reinnervation). Acta Physiol Scand. 2007; 189: 201–6.
  • Madison RD, Archibald SJ, Brushart TM. Reinnervation accuracy of the rat femoral nerve by motor and sensory neurons. J Neurosci. 1996; 16: 5698–703.
  • Madison RD, Archibald SJ, Lacin R, Krarup C. Factors contributing to preferential motor reinnervation in the primate peripheral nervous system. J Neurosci. 1999; 19: 11007–16.
  • Madison RD, Sofroniew MV, Robinson GA. Schwann cell influence on motor neuron regeneration accuracy. Neuroscience. 2009; 163: 213–21.
  • Robinson GA, Madison RD. Manipulations of the mouse femoral nerve influence the accuracy of pathway reinnervation by motor neurons. Exp Neurol. 2005; 192: 39–45.
  • Uschold T, Robinson GA, Madison RD. Motor neuron regeneration accuracy: balancing trophic influences between pathways and end-organs. Exp Neurol. 2007; 205: 250–6.
  • Yaffe D, Saxel O. A myogenic cell line with altered serum requirements for differentiation. Differentiation. 1977; 7: 159–66.
  • Casadei L, Vallorani L, Gioacchini AM, Guescini M, Burattini S, D'Emilio A et al. Proteomics-based investigation in C2C12 myoblast differentiation. Eur J Histochem. 2009; 53: 261–8.
  • Fujita H, Endo A, Shimizu K, Nagamori E. Evaluation of serum-free differentiation conditions for C2C12 myoblast cells assessed as to active tension generation capability. Biotechnol Bioeng. 2010; 107: 894–901.
  • Fujita H, Hirano M, Shimizu K, Nagamori E. Rapid decrease in active tension generated by C2C12 myotubes after termination of artificial exercise. J Muscle Res Cell Motil. 2010; 31: 279–88.
  • Cashman NR, Durham HD, Blusztajn JK, Oda K, Tabira T, Shaw IT et al. Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn. 1992; 194: 209–21.
  • Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med. 2011; 6: 481–92.
  • Dadon-Nachum M, Sadan O, Srugo I, Melamed E, Offen D. Differentiated mesenchymal stem cells for sciatic nerve injury. Stem Cell Rev. 2011; 7: 664–71.
  • Dadon-Nachum M, Melamed E, Offen D. Stem cells treatment for sciatic nerve injury. Expert Opin Biol Ther. 2011; 11: 1591–7.
  • Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010; 4: 214–22.
  • Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010; 38: 215–24.
  • Viaud S, Thery C, Ploix S, Tursz T, Lapierre V, Lantz O et al. Dendritic cell-derived exosomes for cancer immunotherapy: what's next?. Cancer Res. 2010; 70: 1281–5.
  • El Andaloussi S, Lakhal S, Mager I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev. 2013; 65: 391–7.
  • El Andaloussi S, Mager I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013; 12: 347–57.
  • Lakhal S, Wood MJ. Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. Bioessays. 2011; 33: 737–41.