1,714
Views
63
CrossRef citations to date
0
Altmetric
Original Research Articles

Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis

, , , , &
Article: 31427 | Received 25 Feb 2016, Accepted 28 Aug 2016, Published online: 22 Sep 2016

References

  • Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010; 140: 460–76.
  • Zolla V, Nizamutdinova IT, Scharf B, Clement CC, Maejima D, Akl T, etal. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell. 2015; 14: 582–94.
  • Blum KS, Karaman S, Proulx ST, Ochsenbein AM, Luciani P, Leroux JC, etal. Chronic high-fat diet impairs collecting lymphatic vessel function in mice. PLoS One. 2014; 9: e94713.
  • Lim HY, Rutkowski JM, Helft J, Reddy ST, Swartz MA, Randolph GJ, etal. Hypercholesterolemic mice exhibit lymphatic vessel dysfunction and degeneration. Am J Pathol. 2009; 175: 1328–37.
  • Vuorio T, Nurmi H, Moulton K, Kurkipuro J, Robciuc MR, Ohman M, etal. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler Thromb Vasc Biol. 2014; 34: 1162–70.
  • Angeli V, Llodra J, Rong JX, Satoh K, Ishii S, Shimizu T, etal. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity. 2004; 21: 561–74.
  • Martel C, Li W, Fulp B, Platt AM, Gautier EL, Westerterp M, etal. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013; 123: 1571–9.
  • Eliska O, Eliskova M, Miller AJ. The absence of lymphatics in normal and atherosclerotic coronary arteries in man: a morphologic study. Lymphology. 2006; 39: 76–83.
  • Miller AJ, DeBoer A, Palmer A. The role of the lymphatic system in coronary atherosclerosis. Med Hypotheses. 1992; 37: 31–6.
  • Torrisi JS, Hespe GE, Cuzzone DA, Savetsky IL, Nitti MD, Gardenier JC, etal. Inhibition of inflammation and iNOS improves lymphatic function in obesity. Sci Rep. 2016; 6: 19817.
  • Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, etal. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007; 204: 2349–62.
  • Zawieja D. Lymphatic biology and the microcirculation: past, present and future. Microcirculation. 2005; 12: 141–50.
  • Hess PR, Rawnsley DR, Jakus Z, Yang Y, Sweet DT, Fu J, etal. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J Clin Invest. 2014; 124: 273–84.
  • Zaleska M, Olszewski WL, Durlik M, Miller NE. Signaling proteins are represented in tissue fluid/lymph from soft tissues of normal human legs at concentrations different from serum. Lymphat Res Biol. 2013; 11: 203–10.
  • Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, etal. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011; 68: 2667–88.
  • Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014; 30: 255–89.
  • Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease?. Eur J Clin Invest. 2004; 34: 392–401.
  • Buzas EI, Gyorgy B, Nagy G, Falus A, Gay S. Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol. 2014; 10: 356–64.
  • Boilard E, Blanco P, Nigrovic PA. Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol. 2012; 8: 534–42.
  • Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res. 2014; 114: 345–53.
  • Van Der Pol E, Boing AN, Gool EL, Nieuwland R. Recent developments on the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. J Thromb Haemost. 2016; 14: 48–56.
  • Boilard E, Duchez AC, Brisson A. The diversity of platelet microparticles. Curr Opin Hematol. 2015; 22: 437–44.
  • Pitt JM, Kroemer G, Zitvogel L. Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest. 2016; 126: 1139–43.
  • Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, Boilard E, etal. Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood. 2013; 122: 253–61.
  • Laffont B, Corduan A, Rousseau M, Duchez AC, Lee CH, Boilard E, etal. Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemost. 2016; 115: 311–23.
  • Duchez AC, Boudreau LH, Bollinger J, Belleannee C, Cloutier N, Laffont B, etal. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci USA. 2015; 112: E3564–73.
  • Srinivasan S, Vannberg FO, Dixon JB. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci Rep. 2016; 6: 24436.
  • Rousseau M, Belleannee C, Duchez AC, Cloutier N, Levesque T, Jacques F, etal. Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment. PLoS One. 2015; 10: e0116812.
  • Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet S, etal. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014; 12: 614–27.
  • Chandler WL. Measurement of microvesicle levels in human blood using flow cytometry. Cytometry B Clin Cytom. 2016; 90: 326–36.
  • Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002; 105: 1135–43.
  • Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006; 83: 461S–5S.
  • Sloop CH, Dory L, Krause BR, Castle C, Roheim PS. Lipoproteins and apolipoproteins in peripheral lymph of normal and cholesterol-fed dogs. Atherosclerosis. 1983; 49: 9–21.
  • Sloop CH, Dory L, Hamilton R, Krause BR, Roheim PS. Characterization of dog peripheral lymph lipoproteins: the presence of a disc-shaped “nascent” high density lipoprotein. J Lipid Res. 1983; 24: 1429–40.
  • Arraud N, Gounou C, Turpin D, Brisson AR. Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry A. 2015; 89: 184–95.
  • Jungel A, Distler O, Schulze-Horsel U, Huber LC, Ha HR, Simmen B, etal. Microparticles stimulate the synthesis of prostaglandin E2 via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum. 2007; 56: 3564–74.
  • Chistiakov DA, Orekhov AN, Bobryshev YV. Extracellular vesicles and atherosclerotic disease. Cell Mol Life Sci. 2015; 72: 2697–708.
  • Szotowski B, Antoniak S, Goldin-Lang P, Tran QV, Pels K, Rosenthal P, etal. Antioxidative treatment inhibits the release of thrombogenic tissue factor from irradiation- and cytokine-induced endothelial cells. Cardiovasc Res. 2007; 73: 806–12.
  • Milasan A, Dallaire F, Mayer G, Martel C. Effects of LDL Receptor modulation on lymphatic function. Sci Rep. 2016; 6: 27862.
  • Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, etal. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014; 3: 26913. doi: http://dx.doi.org/10.3402/jev.v3.26913.
  • Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014; 3: 24641, doi: http://dx.doi.org/10.3402/jev.v3.24641.