3,492
Views
53
CrossRef citations to date
0
Altmetric
Review Articles

Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity

, , &
Article: 31095 | Received 24 Jan 2016, Accepted 16 Mar 2016, Published online: 20 Apr 2016

References

  • Koo H, Xiao J, Klein MI. Extracellular polysaccharides matrix – an often forgotten virulence factor in oral biofilm research. Int J Oral Sci. 2009; 1: 229–34. [PubMed Abstract] [PubMed CentralFull Text].
  • Tatevossian A. Facts and artefacts in research on human dental plaque fluid. J Dent Res. 1990; 69: 1309–15. [PubMed Abstract].
  • Wilson RF, Ashley FP. Relationships between the biochemical composition of both free smooth surface and approximal plaque and salivary composition and a 24-hour retrospective dietary history of sugar intake in adolescents. Caries Res. 1990; 24: 203–10. [PubMed Abstract].
  • Paes Leme AF, Koo H, Bellato CM, Bedi G, Cury JA. The role of sucrose in cariogenic dental biofilm formation – new insight. J Dent Res. 2006; 85: 878–87. [PubMed Abstract].
  • Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010; 8: 623–33. [PubMed Abstract].
  • Koo H, Xiao J, Klein MI, Jeon JG. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol. 2010; 192: 3024–32. [PubMed Abstract] [PubMed CentralFull Text].
  • Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011; 45: 69–86. [PubMed Abstract] [PubMed CentralFull Text].
  • Aoki H, Shiroza T, Hayakawa M, Sato S, Kuramitsu HK. Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun. 1986; 53: 587–94. [PubMed Abstract] [PubMed CentralFull Text].
  • Hanada N, Kuramitsu HK. Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect Immun. 1988; 56: 1999–2005. [PubMed Abstract] [PubMed CentralFull Text].
  • Hanada N, Kuramitsu HK. Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect Immun. 1989; 57: 2079–85. [PubMed Abstract] [PubMed CentralFull Text].
  • Vacca-Smith AM, Bowen WH. Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces. Arch Oral Biol. 1998; 43: 103–10. [PubMed Abstract].
  • Rolla G, Ciardi JE, Schultz SA. Adsorption of glucosyltransferase to saliva coated hydroxyapatite. Possible mechanism for sucrose dependent bacterial colonization of teeth. Scand J Dent Res. 1983; 91: 112–17. [PubMed Abstract].
  • Vacca-Smith AM, Venkitaraman AR, Quivey RGJr., Bowen WH. Interactions of streptococcal glucosyltransferases with alpha-amylase and starch on the surface of saliva-coated hydroxyapatite. Arch Oral Biol. 1996; 41: 291–8. [PubMed Abstract].
  • Fukui K, Moriyama T. Effect of maltose on glucan synthesis by glucosyltransferases of Streptococcus mutans. Microbiol Immunol. 1983; 27: 917–27. [PubMed Abstract].
  • Fu DT, Robyt JF. Maltodextrin acceptor reactions of Streptococcus mutans 6715 glucosyltransferases. Carbohydr Res. 1991; 217: 201–11. [PubMed Abstract].
  • McCabe MM, Hamelik RM. An enzyme from Streptococcus mutans forms branches on dextran in the absence of sucrose. Biochem Biophys Res Commun. 1983; 115: 287–94. [PubMed Abstract].
  • Russell RR, Shiroza T, Kuramitsu HK, Ferretti JJ. Homology of glucosyltransferase gene and protein sequences from Streptococcus sobrinus and Streptococcus mutans. J Dent Res. 1988; 67: 543–7. [PubMed Abstract].
  • Russell RR. The application of molecular genetics to the microbiology of dental caries. Caries Res. 1994; 28: 69–82. [PubMed Abstract].
  • Ueda S, Shiroza T, Kuramitsu HK. Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. Gene. 1988; 69: 101–9. [PubMed Abstract].
  • Monchois V, Arguello-Morales M, Russell RR. Isolation of an active catalytic core of Streptococcus downei MFe28 GTF-I glucosyltransferase. J Bacteriol. 1999; 181: 2290–2. [PubMed Abstract] [PubMed CentralFull Text].
  • Kralj S, van Geel-Schutten GH, Dondorff MM, Kirsanovs S, van der Maarel MJ, Dijkhuizen L. Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology. 2004; 150: 3681–90. [PubMed Abstract].
  • Devulapalle KS, Mooser G. Subsite specificity of divalent metal ions to glucosyltransferase. J Craniofac Genet Dev Biol. 2000; 20: 107–8. [PubMed Abstract].
  • Ito K, Ito S, Shimamura T, Weyand S, Kawarasaki Y, Misaka T, etal. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J Mol Biol. 2011; 408: 177–86. [PubMed Abstract].
  • Wunder D, Bowen WH. Action of agents on glucosyltransferases from Streptococcus mutans in solution and adsorbed to experimental pellicle. Arch Oral Biol. 1999; 44: 203–14. [PubMed Abstract].
  • Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005; 4: 206–20. [PubMed Abstract].
  • Ooshima T, Minami T, Aono W, Izumitani A, Sobue S, Fujiwara T, etal. Oolong tea polyphenols inhibit experimental dental caries in SPF rats infected with mutans streptococci. Caries Res. 1993; 27: 124–9. [PubMed Abstract].
  • Touyz LZ, Amsel R. Anticariogenic effects of black tea (Camellia sinensis) in caries prone-rats. Quintessence Int. 2001; 32: 647–50. [PubMed Abstract].
  • Linke HA, LeGeros RZ. Black tea extract and dental caries formation in hamsters. Int J Food Sci Nutr. 2003; 54: 89–95. [PubMed Abstract].
  • Otake S, Makimura M, Kuroki T, Nishihara Y, Hirasawa M. Anticaries effects of polyphenolic compounds from Japanese green tea. Caries Res. 1991; 25: 438–43. [PubMed Abstract].
  • Hattori M, Kusumoto IT, Namba T, Ishigami T, Hara Y. Effect of tea polyphenols on glucan synthesis by glucosyltransferase from Streptococcus mutans. Chem Pharm Bull (Tokyo). 1990; 38: 717–20. [PubMed Abstract].
  • Nakahara K, Kawabata S, Ono H, Ogura K, Tanaka T, Ooshima T, etal. Inhibitory effect of oolong tea polyphenols on glycosyltransferases of mutans Streptococci. Appl Environ Microbiol. 1993; 59: 968–73. [PubMed Abstract] [PubMed CentralFull Text].
  • Hirasawa M, Takada K, Otake S. Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries Res. 2006; 40: 265–70. [PubMed Abstract].
  • Ooshima T, Minami T, Aono W, Tamura Y, Hamada S. Reduction of dental plaque deposition in humans by oolong tea extract. Caries Res. 1994; 28: 146–9. [PubMed Abstract].
  • Matsumoto M, Minami T, Sasaki H, Sobue S, Hamada S, Ooshima T. Inhibitory effects of oolong tea extract on caries-inducing properties of mutans streptococci. Caries Res. 1999; 33: 441–5. [PubMed Abstract].
  • Sasaki H, Matsumoto M, Tanaka T, Maeda M, Nakai M, Hamada S, etal. Antibacterial activity of polyphenol components in oolong tea extract against Streptococcus mutans. Caries Res. 2004; 38: 2–8. [PubMed Abstract].
  • Koo H, Rosalen PL, Cury JA, Park YK, Bowen WH. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob Agents Chemother. 2002; 46: 1302–9. [PubMed Abstract] [PubMed CentralFull Text].
  • Koo H, Pearson SK, Scott-Anne K, Abranches J, Cury JA, Rosalen PL, etal. Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats. Oral Microbiol Immunol. 2002; 17: 337–43. [PubMed Abstract].
  • Ikeno K, Ikeno T, Miyazawa C. Effects of propolis on dental caries in rats. Caries Res. 1991; 25: 347–51. [PubMed Abstract].
  • Koo H, Vacca Smith AM, Bowen WH, Rosalen PL, Cury JA, Park YK. Effects of Apis mellifera propolis on the activities of streptococcal glucosyltransferases in solution and adsorbed onto saliva-coated hydroxyapatite. Caries Res. 2000; 34: 418–26. [PubMed Abstract].
  • Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, etal. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother. 2003; 52: 782–9. [PubMed Abstract].
  • Koo H, Schobel B, Scott-Anne K, Watson G, Bowen WH, Cury JA, etal. Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. J Dent Res. 2005; 84: 1016–20. [PubMed Abstract] [PubMed CentralFull Text].
  • Gregoire S, Singh AP, Vorsa N, Koo H. Influence of cranberry phenolics on glucan synthesis by glucosyltransferases and Streptococcus mutans acidogenicity. J Appl Microbiol. 2007; 103: 1960–8. [PubMed Abstract].
  • Koo H, Duarte S, Murata RM, Scott-Anne K, Gregoire S, Watson GE, etal. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Res. 2010; 44: 116–26. [PubMed Abstract] [PubMed CentralFull Text].
  • Yanagida A, Kanda T, Tanabe M, Matsudaira F, Oliveira Cordeiro JG. Inhibitory effects of apple polyphenols and related compounds on cariogenic factors of mutans streptococci. J Agric Food Chem. 2000; 48: 5666–71. [PubMed Abstract].
  • Steinberg D, Feldman M, Ofek I, Weiss EI. Effect of a high-molecular-weight component of cranberry on constituents of dental biofilm. J Antimicrob Chemother. 2004; 54: 86–9. [PubMed Abstract].
  • Yamanaka A, Kimizuka R, Kato T, Okuda K. Inhibitory effects of cranberry juice on attachment of oral streptococci and biofilm formation. Oral Microbiol Immunol. 2004; 19: 150–4. [PubMed Abstract].
  • Duarte S, Gregoire S, Singh AP, Vorsa N, Schaich K, Bowen WH, etal. Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiol Lett. 2006; 257: 50–6. [PubMed Abstract].
  • Matsumoto M, Hamada S, Ooshima T. Molecular analysis of the inhibitory effects of oolong tea polyphenols on glucan-binding domain of recombinant glucosyltransferases from Streptococcus mutans MT8148. FEMS Microbiol Lett. 2003; 228: 73–80. [PubMed Abstract].
  • Osawa K, Miyazaki K, Shimura S, Okuda J, Matsumoto M, Ooshima T. Identification of cariostatic substances in the cacao bean husk: their anti-glucosyltransferase and antibacterial activities. J Dent Res. 2001; 80: 2000–4. [PubMed Abstract].
  • Hamada S, Kontani M, Hosono H, Ono H, Tanaka T, Ooshima T, etal. Peroxidase-catalyzed generation of catechin oligomers that inhibit glucosyltransferase from Streptococcus sobrinus. FEMS Microbiol Lett. 1996; 143: 35–40. [PubMed Abstract].
  • Murata RM, Branco de Almeida LS, Yatsuda R, Dos Santos MH, Nagem TJ, Rosalen PL, etal. Inhibitory effects of 7-epiclusianone on glucan synthesis, acidogenicity and biofilm formation by Streptococcus mutans. FEMS Microbiol Lett. 2008; 282: 174–81. [PubMed Abstract] [PubMed CentralFull Text].
  • Wolinsky LE, Mania S, Nachnani S, Ling S. The inhibiting effect of aqueous Azadirachta indica (Neem) extract upon bacterial properties influencing in vitro plaque formation. J Dent Res. 1996; 75: 816–22. [PubMed Abstract].
  • Wu-Yuan CD, Chen CY, Wu RT. Gallotannins inhibit growth, water-insoluble glucan synthesis, and aggregation of mutans streptococci. J Dent Res. 1988; 67: 51–5. [PubMed Abstract].
  • Ciardi JE, Bowen WH, Rolla G. The effect of antibacterial compounds on glucosyltransferase activity from Streptococcus mutans. Arch Oral Biol. 1978; 23: 301–5. [PubMed Abstract].
  • Devulapalle KS, Mooser G. Subsite specificity of the active site of glucosyltransferases from Streptococcus sobrinus. J Biol Chem. 1994; 269: 11967–71. [PubMed Abstract].
  • Wright WG, Thelwell C, Svensson B, Russell RR. Inhibition of catalytic and glucan-binding activities of a streptococcal GTF forming insoluble glucans. Caries Res. 2002; 36: 353–9. [PubMed Abstract].
  • Newbrun E, Hoover CI, Walker GJ. Inhibition by acarbose, nojirimycin and 1-deoxynojirimycin of glucosyltransferase produced by oral streptococci. Arch Oral Biol. 1983; 28: 531–6. [PubMed Abstract].
  • Ren Z, Cui T, Zeng J, Chen L, Zhang W, Xu X, etal. Molecule targeting Glucosyltransferase Inhibits Streptococcus mutans biofilm formation and virulence. Antimicrob Agents Chemother. 2015; 60: 126–35. [PubMed Abstract].
  • Mesleh MF, Rajaratnam P, Conrad M, Chandrasekaran V, Liu CM, Pandya BA, etal. Targeting bacterial cell wall peptidoglycan synthesis by inhibition of glycosyltransferase activity. Chem Biol Drug Des. 2016; 87: 190–9. [PubMed Abstract].
  • Devulapalle KS, Mooser G. Glucosyltransferase inactivation reduces dental caries. J Dent Res. 2001; 80: 466–9. [PubMed Abstract].
  • Culshaw S, Larosa K, Tolani H, Han X, Eastcott JW, Smith DJ, etal. Immunogenic and protective potential of mutans streptococcal glucosyltransferase peptide constructs selected by major histocompatibility complex class II allele binding. Infect Immun. 2007; 75: 915–23. [PubMed Abstract] [PubMed CentralFull Text].
  • Olson GA, Guggenheim B, Small PAJr.. Antibody-mediated inhibition of dextran-sucrose-induced agglutination of Streptococcus mutans. Infect Immun. 1974; 9: 273–8. [PubMed Abstract] [PubMed CentralFull Text].
  • Douglas CW, Russell RR. Effect of specific antisera on adherence properties of the oral bacterium Streptococcus mutans. Arch Oral Biol. 1982; 27: 1039–45. [PubMed Abstract].
  • Kawato T, Yamashita Y, Katono T, Kimura A, Maeno M. Effects of antibodies against a fusion protein consisting of parts of cell surface protein antigen and glucosyltransferase of Streptococcus sobrinus on cell adhesion of mutans streptococci. Oral Microbiol Immunol. 2008; 23: 14–20. [PubMed Abstract].
  • Oho T, Shimazaki Y, Mitoma M, Yoshimura M, Yamashita Y, Okano K, etal. Bovine milk antibodies against cell surface protein antigen PAc-glucosyltransferase fusion protein suppress cell adhesion and alter glucan synthesis of Streptococcus mutans. J Nutr. 1999; 129: 1836–41. [PubMed Abstract].
  • Wunder D, Bowen WH. Effects of antibodies to glucosyltransferase on soluble and insolubilized enzymes. Oral Dis. 2000; 6: 289–96. [PubMed Abstract].
  • Kopec LK, Vacca Smith AM, Wunder D, Ng-Evans L, Bowen WH. Influence of antibody on the structure of glucans. Caries Res. 2002; 36: 108–15. [PubMed Abstract].
  • Hamada S, Horikoshi T, Minami T, Kawabata S, Hiraoka J, Fujiwara T, etal. Oral passive immunization against dental caries in rats by use of hen egg yolk antibodies specific for cell-associated glucosyltransferase of Streptococcus mutans. Infect Immun. 1991; 59: 4161–7. [PubMed Abstract] [PubMed CentralFull Text].
  • Kruger C, Pearson SK, Kodama Y, Vacca Smith A, Bowen WH, Hammarstrom L. The effects of egg-derived antibodies to glucosyltransferases on dental caries in rats. Caries Res. 2004; 38: 9–14. [PubMed Abstract].
  • Mitoma M, Oho T, Michibata N, Okano K, Nakano Y, Fukuyama M, etal. Passive immunization with bovine milk containing antibodies to a cell surface protein antigen-glucosyltransferase fusion protein protects rats against dental caries. Infect Immun. 2002; 70: 2721–4. [PubMed Abstract] [PubMed CentralFull Text].
  • Bowen WH. Do we need to be concerned about dental caries in the coming millennium?. Crit Rev Oral Biol Med. 2002; 13: 126–31. [PubMed Abstract].
  • Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 2011; 90: 294–303. [PubMed Abstract].
  • Tamesada M, Kawabata S, Fujiwara T, Hamada S. Synergistic effects of streptococcal glucosyltransferases on adhesive biofilm formation. J Dent Res. 2004; 83: 874–9. [PubMed Abstract].
  • Reese S, Guggenheim B. A novel TEM contrasting technique for extracellular polysaccharides in in vitro biofilms. Microsc Res Tech. 2007; 70: 816–22. [PubMed Abstract].