436
Views
1
CrossRef citations to date
0
Altmetric
Thematic cluster: Focus on autism spectrum disorders

Should autism be considered a canary bird telling that Homo sapiens may be on its way to extinction?

Article: 19008 | Published online: 24 Aug 2012

References

  • Constantino JN, Zhang Y, Frazier T, Abbacchi AM, Law P. Sibling recurrence and the genetic epidemiology of autism. Am J Psychiatry. 2010; 167: 1349–56. 10.3402/mehd.v23i0.19008.
  • Blaxill MF. What's going on? The question of time trends in autism. Public Health Rep. 2004; 119: 536–51. 10.3402/mehd.v23i0.19008.
  • Hertz-Picciotto I, Delwiche L. The rise in autism and the role of age at diagnosis. Epidemiology. 2009; 20: 84–90. 10.3402/mehd.v23i0.19008.
  • Herbert MR. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol. 2010; 23: 103–10. 10.3402/mehd.v23i0.19008.
  • McDonald ME, Paul JF. Timing of increased autistic disorder cumulative incidence. Environ Sci Technol. 2010; 44: 2112–8. 10.3402/mehd.v23i0.19008.
  • Grosse SD, Matte TD, Schwartz J, Jackson RJ. Economic gains resulting from the reduction in children's exposure to lead in the United States. Environ Health Perspect. 2002; 110: 563–9. 10.3402/mehd.v23i0.19008.
  • Ferraro PM, Sturniolo A, Naticchia A, D'Alonzo S, Gambaro G. Temporal trend of cadmium exposure in the United States population suggests gender specificities. Intern Med J. 2012; 42: 691–7. doi: 10.3402/mehd.v23i0.19008.
  • Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jørgensen EH, Sonne C, Verreault J, Vijayan MM, Gabrielsen GW. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Sci Total Environ. 2010; 408: 2995–3043. 10.3402/mehd.v23i0.19008.
  • Christophersen OA, Haug A. Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids Health Dis. 2011; 10: 16. 10.3402/mehd.v23i0.19008.
  • Chamberlin TC. The Method of Multiple Working Hypotheses. Science (old series). 1890; 15: 92–6.
  • Chamberlin TC. The Method of Multiple Working Hypotheses: With this method the dangers of parental affection for a favorite theory can be circumvented. Science. 1965; 148: 754–9. 10.3402/mehd.v23i0.19008.
  • Aitken RJ, Sawyer D. The human spermatozoon–not waving but drowning. Adv Exp Med Biol. 2003; 518: 85–98.
  • Jørgensen N, Asklund C, Carlsen E, Skakkebaek NE. Coordinated European investigations of semen quality: results from studies of Scandinavian young men is a matter of concern. Int J Androl. 2006; 29: 54–61.; discussion 105–8.10.3402/mehd.v23i0.19008.
  • Deepinder F, Cocuzza M, Agarwal A. Should seminal oxidative stress measurement be offered routinely to men presenting for infertility evaluation?. Endocr Pract. 2008; 14: 484–91.
  • Benedetti S, Tagliamonte MC, Catalani S, Primiterra M, Canestrari F, Stefani SD, Palini S, Bulletti C. Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod Biomed Online. 2012May 30. [Epub ahead of print].
  • Cocuzza M, Sikka SC, Athayde KS, Agarwal A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol. 2007; 33: 603–21. 10.3402/mehd.v23i0.19008.
  • De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, Nixon B, Aitken RJ. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2'-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009; 81: 517–24. 10.3402/mehd.v23i0.19008.
  • Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010; 25: 2415–26. 10.3402/mehd.v23i0.19008.
  • Barja G. Longevity and Evolution. Aging Issues, Health and Financial Alternatives. Nova Science Pub Inc: Hauppauge NYUnited States, 2012
  • Lee HC, Wei YH. Mitochondria and aging. Adv Exp Med Biol. 2012; 942: 311–27.
  • Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev. 2012; 44: 88–106. 10.3402/mehd.v23i0.19008.
  • Yin H, Zhu M. Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis, mitochondrial dysfunction and human diseases. Free Radic Res. 2012; 46: 959–74. 10.3402/mehd.v23i0.19008.
  • Levy R, Seifer-Aknin I. [Apoptosis during spermatogenesis and in ejaculated spermatozoa: importance for fertilization]. [Article in French] Ann Biol Clin (Paris). 2001; 59: 531–45.
  • Shukla KK, Mahdi AA, Rajender S. Apoptosis, spermatogenesis and male infertility. Front Biosci (Elite Ed). 2012; 4: 746–54.
  • Christophersen OA. Radiation protection following nuclear accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. Microb Ecol Health Dis. 2012; 23. doi: 10.3402/mehd.v23i0.19008.
  • Hu W, Feng Z, Eveleigh J, Iyer G, Pan J, Amin S, Chung FL, Tang MS. The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis. 2002; 23: 1781–1789. 10.3402/mehd.v23i0.19008.
  • Van der Veen LA, Hashim MF, Shyr Y, Marnett LJ. Induction of frameshift and base pair substitution mutations by the major DNA adduct of the endogenous carcinogen malondialdehyde. Proc Natl Acad Sci USA. 2003; 100: 14247–14252. 10.3402/mehd.v23i0.19008.
  • Stein S, Lao Y, Yang IY, Hecht SS, Moriya M. Genotoxicity of acetaldehyde- and crotonaldehyde-induced 1, N2-propanodeoxyguanosine DNA adducts in human cells. Mutat Res. 2006; 608: 1–7. 10.3402/mehd.v23i0.19008.
  • Wang HT, Zhang S, Hu Y, Tang MS. Mutagenicity and sequence specificity of acrolein-DNA adducts. Chem Res Toxicol. 2009; 22: 511–517. 10.3402/mehd.v23i0.19008.
  • Wei YH, Wu SB, Ma YS, Lee HC. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging. Chang Gung Med J. 2009; 32: 113–32.
  • Larosche I, Lettéron P, Berson A, Fromenty B, Huang TT, Moreau R, Pessayre D, Mansouri A. Hepatic mitochondrial DNA depletion after an alcohol binge in mice: probable role of peroxynitrite and modulation by manganese superoxide dismutase. J Pharmacol Exp Ther. 2010; 332: 886–97. 10.3402/mehd.v23i0.19008.
  • Zalata AA, Christophe AB, Depuydt CE, Schoonjans F, Comhaire FH. The fatty acid composition of phospholipids of spermatozoa from infertile patients. Mol Hum Reprod. 1998; 4: 111–8. 10.3402/mehd.v23i0.19008.
  • Conquer JA, Martin JB, Tummon I, Watson L, Tekpetey F. Fatty acid analysis of blood serum, seminal plasma, and spermatozoa of normozoospermic vs. asthenozoospermic males. Lipids. 1999; 34: 793–9. 10.3402/mehd.v23i0.19008.
  • Aksoy Y, Aksoy H, Altinkaynak K, Aydin HR, Ozkan A. Sperm fatty acid composition in subfertile men. Prostaglandins Leukot Essent Fatty Acids. 2006; 75: 75–9. 10.3402/mehd.v23i0.19008.
  • Safarinejad MR, Hosseini SY, Dadkhah F, Asgari MA. Relationship of omega-3 and omega-6 fatty acids with semen characteristics, and anti-oxidant status of seminal plasma: a comparison between fertile and infertile men. Clin Nutr. 2010; 29: 100–5. 10.3402/mehd.v23i0.19008.
  • Safarinejad MR. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic anti-oxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study. Andrologia. 2011; 43: 38–47. doi: 10.3402/mehd.v23i0.19008.
  • Gromer S, Arscott LD, Williams CH Jr, Schirmer RH, Becker K. Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J Biol Chem. 1998; 273: 20096–101. 10.3402/mehd.v23i0.19008.
  • Neumann CA, Cao J, Manevich Y. Peroxiredoxin 1 and its role in cell signaling. Cell Cycle. 2009; 8: 4072–8. 10.3402/mehd.v23i0.19008.
  • Hanschmann EM, Lönn ME, Schütte LD, Funke M, Godoy JR, Eitner S, Hudemann C, Lillig CH. Both thioredoxin 2 and glutaredoxin 2 contribute to the reduction of the mitochondrial 2-Cys peroxiredoxin Prx3. J Biol Chem. 2010; 285: 40699–705. 10.3402/mehd.v23i0.19008.
  • Knoops B, Goemaere J, Van der Eecken V, Declercq JP. Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid Redox Signal. 2011; 15: 817–29. 10.3402/mehd.v23i0.19008.
  • Ogasawara Y, Ohminato T, Nakamura Y, Ishii K. Structural and functional analysis of native peroxiredoxin 2 in human red blood cells. Int J Biochem Cell Biol. 2012; 44: 1072–7. 10.3402/mehd.v23i0.19008.
  • Iuchi Y, Okada F, Tsunoda S, Kibe N, Shirasawa N, Ikawa M, Okabe M, Ikeda Y, Fujii J. Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J. 2009; 419: 149–58. 10.3402/mehd.v23i0.19008.
  • Manandhar G, Miranda-Vizuete A, Pedrajas JR, Krause WJ, Zimmerman S, Sutovsky M, Sutovsky P. Peroxiredoxin 2 and peroxidase enzymatic activity of mammalian spermatozoa. Biol Reprod. 2009; 80: 1168–77. 10.3402/mehd.v23i0.19008.
  • Fujii J, Tsunoda S. Redox regulation of fertilisation and the spermatogenic process. Asian J Androl. 2011; 13: 420–3. 10.3402/mehd.v23i0.19008.
  • O'Flaherty C, de Souza AR. Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod. 2011; 84: 238–47. 10.3402/mehd.v23i0.19008.
  • Yim SH, Kim YJ, Oh SY, Fujii J, Zhang Y, Gladyshev VN, Rhee SG. Identification and characterization of alternatively transcribed form of peroxiredoxin IV gene that is specifically expressed in spermatids of postpubertal mouse testis. J Biol Chem. 2011; 286: 39002–12. 10.3402/mehd.v23i0.19008.
  • Gong S, San Gabriel MC, Zini A, Chan P, O'Flaherty C. Low amounts and high thiol oxidation of peroxiredoxins in spermatozoa from infertile men. J Androl. 2012; Apr 5. [Epub ahead of print].
  • Ellederova Z, Halada P, Man P, Kubelka M, Motlik J, Kovarova H. Protein patterns of pig oocytes during in vitro maturation. Biol Reprod. 2004; 71: 1533–9. 10.3402/mehd.v23i0.19008.
  • Bhojwani M, Rudolph E, Kanitz W, Zuehlke H, Schneider F, Tomek W. Molecular analysis of maturation processes by protein and phosphoprotein profiling during in vitro maturation of bovine oocytes: a proteomic approach. Cloning Stem Cells. 2006; 8: 259–74. 10.3402/mehd.v23i0.19008.
  • Berendt FJ, Fröhlich T, Bolbrinker P, Boelhauve M, Güngör T, Habermann FA, Wolf E, Arnold GJ. Highly sensitive saturation labeling reveals changes in abundance of cell cycle-associated proteins and redox enzyme variants during oocyte maturation in vitro. Proteomics. 2009; 9: 550–64. 10.3402/mehd.v23i0.19008.
  • Wang S, Huang W, Shi H, Lin C, Xie M, Wang J. Localization and expression of peroxiredoxin II in the mouse ovary, oviduct, uterus, and preimplantation embryo. Anat Rec (Hoboken). 2010; 293: 291–7. 10.3402/mehd.v23i0.19008.
  • Zahedi Avval F, Holmgren A. Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for mammalian s phase ribonucleotide reductase. J Biol Chem. 2009; 284: 8233–40. 10.3402/mehd.v23i0.19008.
  • Prigge JR, Eriksson S, Iverson SV, Meade TA, Capecchi MR, Arnér ES, Schmidt EE. Hepatocyte DNA replication in growing liver requires either glutathione or a single allele of txnrd1. Free Radic Biol Med. 2012; 52: 803–10. 10.3402/mehd.v23i0.19008.
  • Furukawa T, Naitoh Y, Kohno H, Tokunaga R, Taketani S. Iron deprivation decreases ribonucleotide reductase activity and DNA synthesis. Life Sci. 1992; 50: 2059–65. 10.3402/mehd.v23i0.19008.
  • Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC, Cheon KA, Kim SJ, Kim YK, Lee H, Song DH, Grinker RR. A Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry. 2011; 168: 904–12. 10.3402/mehd.v23i0.19008.
  • Kjellström T. Exposure and accumulation of cadmium in populations from Japan, the United States, and Sweden. Environ Health Perspect. 1979; 28: 169–97.
  • Louekari K, Salminen S. Intake of heavy metals from foods in Finland, West Germany and Japan. Food Addit Contam. 1986; 3: 355–62. 10.3402/mehd.v23i0.19008.
  • Yoneyama S, Miura K, Itai K, Yoshita K, Nakagawa H, Shimmura T, Okayama A, Sakata K, Saitoh S, Ueshima H, Elliott P, Stamler J, INTERMAP Research Group. Dietary intake and urinary excretion of selenium in the Japanese adult population: the INTERMAP Study Japan. Eur J Clin Nutr. 2008; 62: 1187–93. 10.3402/mehd.v23i0.19008.
  • Underwood EA. Trace Elements in Human and Animal NutritionFourth Edition. Academic Press: New York, 1977
  • Mukherjee A, Sharma A, Talukder G. Effect of selenium on cadmium-induced chromosomal aberrations in bone marrow cells of mice. Toxicol Lett. 1988; 41: 23–9. 10.3402/mehd.v23i0.19008.
  • Rana SV, Verma S. Protective effects of GSH, vitamin E, and selenium on lipid peroxidation in cadmium-fed rats. Biol Trace Elem Res. 1996; 51: 161–8. 10.3402/mehd.v23i0.19008.
  • Annegers JF. Protein quality of West African foods. Ecol Food Nutr. 1974; 3: 125–30. 10.3402/mehd.v23i0.19008.
  • Jiang T, Christian P, Khatry SK, Wu L, West KP Jr.. Micronutrient deficiencies in early pregnancy are common, concurrent, and vary by season among rural Nepali pregnant women. J Nutr. 2005; 135: 1106–12.
  • Yajnik CS, Deshpande SS, Lubree HG, Naik SS, Bhat DS, Uradey BS, Deshpande JA, Rege SS, Refsum H, Yudkin JS. Vitamin B12 deficiency and hyperhomocysteinemia in rural and urban Indians. J Assoc Physicians India. 2006; 54: 775–82.
  • Stoecker BJ, Abebe Y, Hubbs-Tait L, Kennedy TS, Gibson RS, Arbide I, Teshome A, Westcott J, Krebs NF, Hambidge KM. Zinc status and cognitive function of pregnant women in Southern Ethiopia. Eur J Clin Nutr. 2009; 63: 916–8. 10.3402/mehd.v23i0.19008.
  • Christophersen OA, Haug A, Steinnes E. Deforestation, mineral nutrient depletion in the soil and HIV disease. Science without borders. Transactions of the International Academy of Science H&E. Special Edition International Conference Oslo 2009. Innsbruck., SWB, 2010, pp. 26–34.
  • Haug A, Christophersen OA, Kinabo J, Kaunda W, Eik LO. Use of dried kapenta and other products based on whole fish for complementing maize-based diets. AJFAND (Afr J Food Agric Nutr Dev). 2010; 10: 2478–500.
  • Gebremedhin S, Enquselassie F, Umeta M. Prevalence of prenatal zinc deficiency and its association with socio-demographic, dietary and health care related factors in rural Sidama, Southern Ethiopia: a cross-sectional study. BMC Public Health. 2011; 11: 898. 10.3402/mehd.v23i0.19008.
  • Lindström E, Hossain MB, Lönnerdal B, Raqib R, El Arifeen S, Ekström EC. Prevalence of anemia and micronutrient deficiencies in early pregnancy in rural Bangladesh, the MINIMat trial. Acta Obstet Gynecol Scand. 2011; 90: 47–56. doi: 10.3402/mehd.v23i0.19008.
  • Wickramasinghe SN, Fida S. Bone marrow cells from vitamin B12- and folate-deficient patients misincorporate uracil into DNA. Blood. 1994; 83: 1656–61.
  • Duthie SJ, Hawdon A. DNA instability (strand breakage, uracil misincorporation, and defective repair) is increased by folic acid depletion in human lymphocytes in vitro. FASEB J. 1998; 12: 1491–7.
  • Duthie SJ. Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull. 1999; 55: 578–92. 10.3402/mehd.v23i0.19008.
  • Choi SW, Friso S, Ghandour H, Bagley PJ, Selhub J, Mason JB. Vitamin B-12 deficiency induces anomalies of base substitution and methylation in the DNA of rat colonic epithelium. J Nutr. 2004; 134: 750–5.
  • Kapiszewska M, Kalemba M, Wojciech U, Milewicz T. Uracil misincorporation into DNA of leukocytes of young women with positive folate balance depends on plasma vitamin B12 concentrations and methylenetetrahydrofolate reductase polymorphisms. A pilot study. J Nutr Biochem. 2005; 16: 467–78. 10.3402/mehd.v23i0.19008.
  • Fenech M. Folate, DNA damage and the aging brain. Mech Ageing Dev. 2010; 131: 236–41. 10.3402/mehd.v23i0.19008.
  • Visnes T, Doseth B, Pettersen HS, Hagen L, Sousa MM, Akbari M, Otterlei M, Kavli B, Slupphaug G, Krokan HE. Uracil in DNA and its processing by different DNA glycosylases. Philos Trans R Soc Lond B Biol Sci. 2009; 364: 563–8. 10.3402/mehd.v23i0.19008.
  • Fenech M, Aitken C, Rinaldi J. Folate, vitamin B12, homocysteine status and DNA damage in young Australian adults. Carcinogenesis. 1998; 19: 1163–71. 10.3402/mehd.v23i0.19008.
  • Hambidge KM, Casey CE, Krebs NF. ZincIn: Mertz W. Trace Elements in Human and Animal Nutrition – Fifth Edition. Vol. 2. New York: Academic Press. 1986, pp. 1–137.
  • Prasad AS. Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol. 2012; 26: 66–9. 10.3402/mehd.v23i0.19008.
  • Pasricha SR. Should we screen for iron deficiency anaemia? A review of the evidence and recent recommendations. Pathology. 2012; 44: 139–47. 10.3402/mehd.v23i0.19008.
  • Lei XG, Evenson JK, Thompson KM, Sunde RA. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J Nutr. 1995; 125: 1438–46.
  • Lei XG, Ross DA, Parks JE, Combs GF Jr.. Effects of dietary selenium and vitamin E concentrations on phospholipid hydroperoxide glutathione peroxidase expression in reproductive tissues of pubertal maturing male rats. Biol Trace Elem Res. 1997; 59: 195–206. 10.3402/mehd.v23i0.19008.
  • Piao J, Zhang Z, Yang X, Tian Y. [Priority of selenium incorporation into selenoproteins during selenium depletion in rats]. [Article in Chinese] Wei Sheng Yan Jiu. 1999; 28: 158–61.
  • Vézina D, Mauffette F, Roberts KD, Bleau G. Selenium-vitamin E supplementation in infertile men. Effects on semen parameters and micronutrient levels and distribution. Biol Trace Elem Res. 1996; 53: 65–83. 10.3402/mehd.v23i0.19008.
  • Keskes-Ammar L, Feki-Chakroun N, Rebai T, Sahnoun Z, Ghozzi H, Hammami S, Zghal K, Fki H, Damak J, Bahloul A. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch Androl. 2003; 49: 83–94. 10.3402/mehd.v23i0.19008.
  • Safarinejad MR, Safarinejad S. Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study. J Urol. 2009; 181: 741–51. 10.3402/mehd.v23i0.19008.
  • Hori K, Miyamoto S, Yukawa Y, Muto M, Chiba T, Matsuda T. Stability of acetaldehyde-derived DNA adduct in vitro. Biochem Biophys Res Commun. 2012; 423: 642–6. 10.3402/mehd.v23i0.19008.
  • Singh R, Gromadzinska J, Mistry Y, Cordell R, Juren T, Segerbäck D, Farmer PB. Detection of acetaldehyde derived N(2)-ethyl-2'-deoxyguanosine in human leukocyte DNA following alcohol consumption. Mutat Res. 2012. Jul 20 [Epub ahead of print].
  • Nakao LS, Augusto O. Nucleic acid alkylation by free radical metabolites of ethanol. Formation of 8-(1-hydroxyethyl)guanine and 8-(2-hydroxyethyl)guanine adducts. Chem Res Toxicol. 1998; 11: 888–94. 10.3402/mehd.v23i0.19008.
  • Nakao LS, Fonseca E, Augusto O. Detection of C8-(1-hydroxyethyl)guanine in liver RNA and DNA from control and ethanol-treated rats. Chem Res Toxicol. 2002; 15: 1248–53. 10.3402/mehd.v23i0.19008.
  • Conde de la Rosa L, Moshage H, Nieto N. [Hepatocyte oxidant stress and alcoholic liver disease]. [Article in Spanish] Rev Esp Enferm Dig. 2008; 100: 156–63.
  • Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol. 2009; 83: 519–48. 10.3402/mehd.v23i0.19008.
  • Aaseth J, Smith-Kielland A, Thomassen Y. Selenium, alcohol and liver diseases. Ann Clin Res. 1986; 18: 43–7.
  • Menzano E, Carlen PL. Zinc deficiency and corticosteroids in the pathogenesis of alcoholic brain dysfunction–a review. Alcohol Clin Exp Res. 1994; 18: 895–901. 10.3402/mehd.v23i0.19008.
  • Pöschl G, Stickel F, Wang XD, Seitz HK. Alcohol and cancer: genetic and nutritional aspects. Proc Nutr Soc. 2004; 63: 65–71. 10.3402/mehd.v23i0.19008.
  • Allen LH. Causes of vitamin B12 and folate deficiency. Food Nutr Bull. 2008; 29(2 Suppl):S20–34.; discussion S35–7.
  • González-Reimers E, Galindo-Martín L, Santolaria-Fernández F, Sánchez-Pérez MJ, Alvisa-Negrín J, García-Valdecasas-Campelo E, González-Pérez JM, Martín-González MC. Prognostic value of serum selenium levels in alcoholics. Biol Trace Elem Res. 2008; 125: 22–9. 10.3402/mehd.v23i0.19008.
  • Padmini E, Sundari BT. Erythrocyte glutathione depletion impairs resistance to haemolysis in women consuming alcohol. J Clin Biochem Nutr. 2008; 42: 14–20. 10.3402/mehd.v23i0.19008.
  • González-Reimers E, Martín-González MC, Alemán-Valls MR, de la Vega-Prieto MJ, Galindo-Martín L, Abreu-González P, Santolaria-Fernández F. Relative and combined effects of chronic alcohol consumption and HCV infection on serum zinc, copper, and selenium. Biol Trace Elem Res. 2009; 132: 75–84. 10.3402/mehd.v23i0.19008.
  • Summers BL, Rofe AM, Coyle P. Dietary zinc supplementation throughout pregnancy protects against fetal dysmorphology and improves postnatal survival after prenatal ethanol exposure in mice. Alcohol Clin Exp Res. 2009; 33: 591–600. 10.3402/mehd.v23i0.19008.
  • Safarinejad MR. Sperm DNA damage and semen quality impairment after treatment with selective serotonin reuptake inhibitors detected using semen analysis and sperm chromatin structure assay. J Urol. 2008; 180: 2124–8. 10.3402/mehd.v23i0.19008.
  • Croen LA, Grether JK, Yoshida CK, Odouli R, Hendrick V. Antidepressant use during pregnancy and childhood autism spectrum disorders. Arch Gen Psychiatry. 2011; 68: 1104–12. doi: 10.3402/mehd.v23i0.19008.
  • Crow JF. The high spontaneous mutation rate: is it a health risk?. Proc Natl Acad Sci USA. 1997; 94: 8380–6. 10.3402/mehd.v23i0.19008.
  • Dey A, Nebert DW. Markedly increased constitutive CYP1A1 mRNA levels in the fertilized ovum of the mouse. Biochem Biophys Res Commun. 1998; 251: 657–61. 10.3402/mehd.v23i0.19008.
  • Muskhelishvili L, Freeman LD, Latendresse JR, Bucci TJ. An immunohistochemical label to facilitate counting of ovarian follicles. Toxicol Pathol. 2002; 30: 400–2. 10.3402/mehd.v23i0.19008.
  • Pocar P, Augustin R, Fischer B. Constitutive expression of CYP1A1 in bovine cumulus oocyte-complexes in vitro: mechanisms and biological implications. Endocrinology. 2004; 145: 1594–601. 10.3402/mehd.v23i0.19008.
  • Vidal JD, Vandevoort CA, Marcus CB, Lazarewicz NR, Conley AJ. 2,3,7,8-tetrachlorodibenzo-p-dioxin induces CYP1B1 expression in humanluteinized granulosa cells. Arch Biochem Biophys. 2005; 439: 53–60. 10.3402/mehd.v23i0.19008.
  • Vidal JD, VandeVoort CA, Marcus CB, Lazarewicz NR, Conley AJ. In vitro exposure to environmental tobacco smoke induces CYP1B1 expression in human luteinized granulosa cells. Reprod Toxicol. 2006; 22: 731–7. 10.3402/mehd.v23i0.19008.
  • Spink DC, Spink BC, Cao JQ, DePasquale JA, Pentecost BT, Fasco MJ, Li Y, Sutter TR. Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells. Carcinogenesis. 1998; 19: 291–8. 10.3402/mehd.v23i0.19008.
  • Chen ZH, Hurh YJ, Na HK, Kim JH, Chun YJ, Kim DH, Kang KS, Cho MH, Surh YJ. Resveratrol inhibits TCDD-induced expression of CYP1A1 and CYP1B1 and catechol estrogen-mediated oxidative DNA damage in cultured human mammary epithelial cells. Carcinogenesis. 2004; 25: 2005–13. 10.3402/mehd.v23i0.19008.
  • Hurh YJ, Chen ZH, Na HK, Han SY, Surh YJ. 2-Hydroxyestradiol induces oxidative DNA damage and apoptosis in human mammary epithelial cells. J Toxicol Environ Health A. 2004; 67: 1939–53. 10.3402/mehd.v23i0.19008.
  • Chen ZH, Na HK, Hurh YJ, Surh YJ. 4-Hydroxyestradiol induces oxidative stress and apoptosis in human mammary epithelial cells: possible protection by NF-kappaB and ERK/MAPK. Toxicol Appl Pharmacol. 2005; 208: 46–56. 10.3402/mehd.v23i0.19008.
  • Wang Z, Chandrasena ER, Yuan Y, Peng KW, van Breemen RB, Thatcher GR, Bolton JL. Redox cycling of catechol estrogens generating apurinic/apyrimidinic sites and 8-oxo-deoxyguanosine via reactive oxygen species differentiates equine and human estrogens. Chem Res Toxicol. 2010; 23: 1365–73. 10.3402/mehd.v23i0.19008.
  • Butterworth M, Lau SS, Monks TJ. 17 beta-Estradiol metabolism by hamster hepatic microsomes. Implications for the catechol-O-methyl transferase-mediated detoxication of catechol estrogens. Drug Metab Dispos. 1996; 24: 588–94.
  • Lavigne JA, Goodman JE, Fonong T, Odwin S, He P, Roberts DW, Yager JD. The effects of catechol-O-methyltransferase inhibition on estrogen metabolite and oxidative DNA damage levels in estradiol-treated MCF-7 cells. Cancer Res. 2001; 61: 7488–94.
  • Dawling S, Roodi N, Parl FF. Methoxyestrogens exert feedback inhibition on cytochrome P450 1A1 and 1B1. Cancer Res. 2003; 63: 3127–32.
  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP. S-Adenosylmethionine and methylation. FASEB J. 1996; 10: 471–80.
  • Wei H, Zhang R, Wang C, Zheng H, Li A, Chou KC, Wei DQ. Molecular insights of SAH enzyme catalysis and implication for inhibitor design. J Theor Biol. 2007; 244: 692–702. 10.3402/mehd.v23i0.19008.
  • Amara IE, Anwar-Mohamed A, Abdelhamid G, El-Kadi AO. Effect of mercury on aryl hydrocarbon receptor-regulated genes in the extrahepatic tissues of C57BL/6 mice. Food Chem Toxicol. 2012; 50: 2325–34. 10.3402/mehd.v23i0.19008.
  • Chen HS, Chiang PH, Wang YC, Kao MC, Shieh TH, Tsai CF, Tsai EM. Benzyl butyl phthalate induces necrosis by AhR mediation of CYP1B1 expression in human granulosa cells. Reprod Toxicol. 2012; 33: 67–75. 10.3402/mehd.v23i0.19008.
  • Ohno M, Ikenaka Y, Ishizuka M. Sudan III dye strongly induces CYP1A1 mRNA expression in HepG2 cells. J Biochem Mol Toxicol. 2012; 26: 16–22. doi: 10.3402/mehd.v23i0.19008.
  • Beedanagari SR, Taylor RT, Hankinson O. Differential regulation of the dioxin-induced Cyp1A1 and Cyp1B1 genes in mouse hepatoma and fibroblast cell lines. Toxicol Lett. 2010; 194: 26–33. 10.3402/mehd.v23i0.19008.
  • Kopf PG, Walker MK. 2,3,7,8-tetrachlorodibenzo-p-dioxin increases reactive oxygen species production in human endothelial cells via induction of cytochrome P450 1A1. Toxicol Appl Pharmacol. 2010; 245: 91–9. 10.3402/mehd.v23i0.19008.
  • Stejskalova L, Pavek P. The function of cytochrome P450 1A1 enzyme (CYP1A1) and aryl hydrocarbonreceptor (AhR) in the placenta. Curr Pharm Biotechnol. 2011; 12: 715–30.
  • Shimada T, Inoue K, Suzuki Y, Kawai T, Azuma E, Nakajima T, Shindo M, Kurose K, Sugie A, Yamagishi Y, Fujii-Kuriyama Y, Hashimoto M. Arylhydrocarbon receptor-dependent induction of liver and lung cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in genetically engineered C57BL/6J mice. Carcinogenesis. 2002; 23: 1199–207. 10.3402/mehd.v23i0.19008.
  • Spink BC, Pang S, Pentecost BT, Spink DC. Induction of cytochrome P450 1B1 in MDA-MB-231 human breast cancer cells by non-ortho-substituted polychlorinated biphenyls. Toxicol In Vitro. 2002; 16: 695–704. 10.3402/mehd.v23i0.19008.
  • Behnisch PA, Hosoe K, Sakai S. Brominated dioxin-like compounds: in vitro assessment in comparison to classical dioxin-like compounds and other polyaromatic compounds. Environ Int. 2003; 29: 861–77. 10.3402/mehd.v23i0.19008.
  • Brown DJ, Van Overmeire I, Goeyens L, Denison MS, De Vito MJ, Clark GC. Analysis of Ah receptor pathway activation by brominated flame retardants. Chemosphere. 2004; 55: 1509–18. 10.3402/mehd.v23i0.19008.
  • Kuiper RV, Murk AJ, Leonards PE, Grinwis GC, van den Berg M, Vos JG. In vivo and in vitro Ah-receptor activation by commercial and fractionated pentabromodiphenylether using zebrafish (Danio rerio) and the DR-CALUX assay. Aquat Toxicol. 2006; 79: 366–75. 10.3402/mehd.v23i0.19008.
  • Olsman H, Hagberg J, Kalbin G, Julander A, van Bavel B, Strid A, Tysklind M, Engwall M. Ah receptor agonists in UV-exposed toluene solutions of decabromodiphenyl ether (decaBDE) and in soils contaminated with polybrominated diphenyl ethers (PBDEs). Environ Sci Pollut Res Int. 2006; 13: 161–9. 10.3402/mehd.v23i0.19008.
  • Hughes D, Guttenplan JB, Marcus CB, Subbaramaiah K, Dannenberg AJ. Heat shock protein 90 inhibitors suppress aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and DNA adduct formation. Cancer Prev Res (Phila). 2008; 1: 485–93. 10.3402/mehd.v23i0.19008.
  • Andersson E, Rotander A, von Kronhelm T, Berggren A, Ivarsson P, Hollert H, Engwall M. AhR agonist and genotoxicant bioavailability in a PAH-contaminated soil undergoing biological treatment. Environ Sci Pollut Res Int. 2009; 16: 521–30. 10.3402/mehd.v23i0.19008.
  • Uppstad H, Osnes GH, Cole KJ, Phillips DH, Haugen A, Mollerup S. Sex differences in susceptibility to PAHs is an intrinsic property of human lung adenocarcinoma cells. Lung Cancer. 2011; 71: 264–70. 10.3402/mehd.v23i0.19008.
  • Denison MS, Phelan D, Winter GM, Ziccardi MH. Carbaryl, a carbamate insecticide, is a ligand for the hepatic Ah (dioxin) receptor. Toxicol Appl Pharmacol. 1998; 152: 406–14. 10.3402/mehd.v23i0.19008.
  • Badawi AF, Cavalieri EL, Rogan EG. Effect of chlorinated hydrocarbons on expression of cytochrome P450 1A1, 1A2 and 1B1 and 2- and 4-hydroxylation of 17beta-estradiol in female Sprague-Dawley rats. Carcinogenesis. 2000; 21: 1593–9. 10.3402/mehd.v23i0.19008.
  • Sandoz C, Lesca P, Narbonne JF, Carpy A. Molecular characteristics of carbaryl, a CYP1A1 gene inducer. Arch Biochem Biophys. 2000; 373: 275–80. 10.3402/mehd.v23i0.19008.
  • Zhao B, Baston DS, Hammock B, Denison MS. Interaction of diuron and related substituted phenylureas with the Ah receptor pathway. J Biochem Mol Toxicol. 2006; 20: 103–13. 10.3402/mehd.v23i0.19008.
  • Takeuchi S, Iida M, Yabushita H, Matsuda T, Kojima H. In vitro screening for aryl hydrocarbon receptor agonistic activity in 200 pesticides using a highly sensitive reporter cell line, DR-EcoScreen cells, and in vivo mouse liver cytochrome P450-1A induction by propanil, diuron and linuron. Chemosphere. 2008; 74: 155–65. 10.3402/mehd.v23i0.19008.
  • Sergent T, Dupont I, Jassogne C, Ribonnet L, van der Heiden E, Scippo ML, Muller M, McAlister D, Pussemier L, Larondelle Y, Schneider YJ. CYP1A1 induction and CYP3A4 inhibition by the fungicide imazalil in the human intestinal Caco-2 cells-comparison with other conazole pesticides. Toxicol Lett. 2009; 184: 159–68. 10.3402/mehd.v23i0.19008.
  • Ribonnet L, van der Heiden E, Nobels I, Chaumont A, Remacle AS, De Saeger S, Schneider YJ, Scippo ML, Blust R, Pussemier L, Larondelle Y. Potential of an in vitro toolbox combined with exposure data as a first step for the risk assessment of dietary chemical contaminants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011; 28: 1136–58.
  • Ngo AD, Taylor R, Roberts CL, Nguyen TV. Association between Agent Orange and birth defects: systematic review and meta-analysis. Int J Epidemiol. 2006; 35: 1220–30. 10.3402/mehd.v23i0.19008.
  • Ngo AD, Taylor R, Roberts CL. Paternal exposure to Agent Orange and spina bifida: a meta-analysis. Eur J Epidemiol. 2010; 25: 37–44. 10.3402/mehd.v23i0.19008.
  • Volk HE, Hertz-Picciotto I, Delwiche L, Lurmann F, McConnell R. Residential proximity to freeways and autism in the CHARGE study. Environ Health Perspect. 2011; 119: 873–7. 10.3402/mehd.v23i0.19008.
  • Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S, Hansen RL, Hertz-Picciotto I. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics. 2012; 129: e1121–8. 10.3402/mehd.v23i0.19008.
  • Fleming T, Rabbani N, Thornalley PJ. Preparation of nucleotide advanced glycation endproducts–imidazopurinone adducts formed by glycation of deoxyguanosine with glyoxal and methylglyoxal. Ann N Y Acad Sci. 2008; 1126: 280–2. 10.3402/mehd.v23i0.19008.
  • Pluskota-Karwatka D, Pawłowicz AJ, Bruszyńska M, Greszkiewicz A, Latajka R, Kronberg L. Identification of adducts formed in the reactions of malonaldehyde-glyoxal and malonaldehyde-methylglyoxal with adenosine and calf thymus DNA. Chem Biodivers. 2010; 7: 959–74. 10.3402/mehd.v23i0.19008.
  • Voulgaridou GP, Anestopoulos I, Franco R, Panayiotidis MI, Pappa A. DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res. 2011; 711: 13–27. 10.3402/mehd.v23i0.19008.
  • Thornalley PJ. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems–role in ageing and disease. Drug Metabol Drug Interact. 2008; 23: 125–50. 10.3402/mehd.v23i0.19008.
  • Thornalley PJ. Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity ofglyoxalase I inhibitors. Chem Biol Interact. 1998; 111–112: 137–51. 10.3402/mehd.v23i0.19008.
  • Thornalley PJ, McLellan AC, Lo TW, Benn J, Sönksen PH. Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clin Sci (Lond). 1996; 91: 575–82.
  • Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience. 2007; 145: 11–9. 10.3402/mehd.v23i0.19008.
  • Boussouar F, Mauduit C, Tabone E, Pellerin L, Magistretti PJ, Benahmed M. Developmental and hormonal regulation of the monocarboxylate transporter 2 (MCT2) expression in the mouse germ cells. Biol Reprod. 2003; 69: 1069–78. 10.3402/mehd.v23i0.19008.
  • Rato L, Alves MG, Socorro S, Duarte AI, Cavaco JE, Oliveira PF. Metabolic regulation is important for spermatogenesis. Nat Rev Urol. 2012; 9: 330–8. doi: 10.3402/mehd.v23i0.19008.
  • Cabler S, Agarwal A, Flint M, du Plessis SS. Obesity: modern man's fertility nemesis. Asian J Androl. 2010; 12: 480–9. 10.3402/mehd.v23i0.19008.
  • Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A. The effect of obesity on sperm disorders and male infertility. Nat Rev Urol. 2010; 7: 153–61. 10.3402/mehd.v23i0.19008.
  • Burd L, Severud R, Kerbeshian J, Klug MG. Prenatal and perinatal risk factors for autism. J Perinat Med. 1999; 27: 441–50. 10.3402/mehd.v23i0.19008.
  • Croen LA, Grether JK, Selvin S. Descriptive epidemiology of autism in a California population: who is at risk?. J Autism Dev Disord. 2002; 32: 217–24. 10.3402/mehd.v23i0.19008.
  • Lauritsen MB, Pedersen CB, Mortensen PB. Effects of familial risk factors and place of birth on the risk of autism: a nationwide register-based study. J Child Psychol Psychiatry. 2005; 46: 963–71. 10.3402/mehd.v23i0.19008.
  • Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J, Harlap S, Rabinowitz J, Shulman C, Malaspina D, Lubin G, Knobler HY, Davidson M, Susser E. Advancing paternal age and autism. Arch Gen Psychiatry. 2006; 63: 1026–32. 10.3402/mehd.v23i0.19008.
  • Croen LA, Najjar DV, Fireman B, Grether JK. Maternal and paternal age and risk of autism spectrum disorders. Arch Pediatr Adolesc Med. 2007; 161: 334–40. 10.3402/mehd.v23i0.19008.
  • Kolevzon A, Gross R, Reichenberg A. Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch Pediatr Adolesc Med. 2007; 161: 326–33. 10.3402/mehd.v23i0.19008.
  • Durkin MS, Maenner MJ, Newschaffer CJ, Lee LC, Cunniff CM, Daniels JL, Kirby RS, Leavitt L, Miller L, Zahorodny W, Schieve LA. Advanced parental age and the risk of autism spectrum disorder. Am J Epidemiol. 2008; 168: 1268–76. 10.3402/mehd.v23i0.19008.
  • Tsuchiya KJ, Matsumoto K, Miyachi T, Tsujii M, Nakamura K, Takagai S, Kawai M, Yagi A, Iwaki K, Suda S, Sugihara G, Iwata Y, Matsuzaki H, Sekine Y, Suzuki K, Sugiyama T, Mori N, Takei N. Paternal age at birth and high-functioning autistic-spectrum disorder in offspring. Br J Psychiatry. 2008; 193: 316–21. 10.3402/mehd.v23i0.19008.
  • Williams K, Helmer M, Duncan GW, Peat JK, Mellis CM. Perinatal and maternal risk factors for autism spectrum disorders in New South Wales, Australia. Child Care Health Dev. 2008; 34: 249–56. 10.3402/mehd.v23i0.19008.
  • Bilder D, Pinborough-Zimmerman J, Miller J, McMahon W. Prenatal, perinatal, and neonatal factors associated with autism spectrum disorders. Pediatrics. 2009; 123: 1293–300. 10.3402/mehd.v23i0.19008.
  • Gardener H, Spiegelman D, Buka SL. Prenatal risk factors for autism: comprehensive meta-analysis. Br J Psychiatry. 2009; 195: 7–14. 10.3402/mehd.v23i0.19008.
  • Grether JK, Anderson MC, Croen LA, Smith D, Windham GC. Risk of autism and increasing maternal and paternal age in a large north American population. Am J Epidemiol. 2009; 170: 1118–26. 10.3402/mehd.v23i0.19008.
  • King MD, Fountain C, Dakhlallah D, Bearman PS. Estimated autism risk and older reproductive age. Am J Public Health. 2009; 99: 1673–9. 10.3402/mehd.v23i0.19008.
  • Golding J, Steer C, Pembrey M. Parental and grandparental ages in the autistic spectrum disorders: a birth cohort study. PLoS One. 2010; 5: e9939. 10.3402/mehd.v23i0.19008.
  • Shelton JF, Tancredi DJ, Hertz-Picciotto I. Independent and dependent contributions of advanced maternal and paternal ages to autism risk. Autism Res. 2010; 3: 30–9. Erratum in: Autism Res 2010;3:98.10.3402/mehd.v23i0.19008.
  • Zhang X, Lv CC, Tian J, Miao RJ, Xi W, Hertz-Picciotto I, Qi L. Prenatal and perinatal risk factors for autism in China. J Autism Dev Disord. 2010; 40: 1311–21. Erratum in: J Autism Dev Disord 2010;40:1322.10.3402/mehd.v23i0.19008.
  • Ben Itzchak E, Lahat E, Zachor DA. Advanced parental ages and low birth weight in autism spectrum disorders–rates and effect on functioning. Res Dev Disabil. 2011; 32: 1776–81. 10.3402/mehd.v23i0.19008.
  • Hultman CM, Sandin S, Levine SZ, Lichtenstein P, Reichenberg A. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol Psychiatry. 2011; 16: 1203–12. doi: 10.3402/mehd.v23i0.19008.
  • Puleo CM, Schmeidler J, Reichenberg A, Kolevzon A, Soorya LV, Buxbaum JD, Silverman JM. Advancing paternal age and simplex autism. Autism. 2011Dec 16. [Epub ahead of print].
  • Parner ET, Baron-Cohen S, Lauritsen MB, Jørgensen M, Schieve LA, Yeargin-Allsopp M, Obel C. Parental age and autism spectrum disorders. Ann Epidemiol. 2012; 22: 143–50. 10.3402/mehd.v23i0.19008.
  • Sandin S, Hultman CM, Kolevzon A, Gross R, MacCabe JH, Reichenberg A. Advancing maternal age is associated with increasing risk for autism: a review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2012; 51: 477–86. 10.3402/mehd.v23i0.19008.
  • Biebricher CK, Eigen M. The error threshold. Virus Res. 2005; 107: 117–27. 10.3402/mehd.v23i0.19008.
  • Schuster P. Mathematical modeling of evolution. Solved and open problems. Theory Biosci. 2011; 130: 71–89. 10.3402/mehd.v23i0.19008.
  • Rowe G, Beebee TJ. Population on the verge of a mutational meltdown? Fitness costs of genetic load for an amphibian in the wild. Evolution. 2003; 57: 177–81.
  • Malarz K. The risk of extinction-the mutational meltdown or the overpopulation. Theory Biosci. 2007; 125: 147–56.
  • Allen JM, Light JE, Perotti MA, Braig HR, Reed DL. Mutational meltdown in primary endosymbionts: selection limits Muller's ratchet. PLoS One. 2009; 4: e4969. 10.3402/mehd.v23i0.19008.
  • Nachman MW, Crowell SL. Estimate of the mutation rate per nucleotide in humans. Genetics. 2000; 156: 297–304.
  • Elena SF, Sanjuán R. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J Virol. 2005; 79: 11555–8. 10.3402/mehd.v23i0.19008.
  • Biebricher CK, Eigen M. What is a quasispecies?. Curr Top Microbiol Immunol. 2006; 299: 1–31.
  • Belshaw R, Gardner A, Rambaut A, Pybus OG. Pacing a small cage: mutation and RNA viruses. Trends Ecol Evol. 2008; 23: 188–93. 10.3402/mehd.v23i0.19008.
  • Chen FC, Li WH. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet. 2001; 68: 444–56. 10.3402/mehd.v23i0.19008.
  • Ebersberger I, Metzler D, Schwarz C, Pääbo S. Genomewide comparison of DNA sequences between humans and chimpanzees. Am J Hum Genet. 2002; 70: 1490–7. 10.3402/mehd.v23i0.19008.
  • Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005; 437: 69–87. 10.3402/mehd.v23i0.19008.
  • Montessori V, Harris M, Montaner JS. Hepatotoxicity of nucleoside reverse transcriptase inhibitors. Semin Liver Dis. 2003; 23: 167–72. 10.3402/mehd.v23i0.19008.
  • Haugaard SB, Andersen O, Pedersen SB, Dela F, Richelsen B, Nielsen JO, Madsbad S, Iversen J. Depleted skeletal muscle mitochondrial DNA, hyperlactatemia, and decreased oxidative capacity in HIV-infected patients on highly active antiretroviral therapy. J Med Virol. 2005; 77: 29–38. 10.3402/mehd.v23i0.19008.
  • Garrabou G, Morén C, Gallego-Escuredo JM, Milinkovic A, Villarroya F, Negredo E, Giralt M, Vidal F, Pedrol E, Martínez E, Cardellach F, Gatell JM, Miró O. Genetic and functional mitochondrial assessment of HIV-infected patients developing HAART-related hyperlactatemia. J Acquir Immune Defic Syndr. 2009; 52: 443–51. 10.3402/mehd.v23i0.19008.
  • Copeland WC, Longley MJ. DNA polymerase gamma in mitochondrial DNA replication and repair. Scientific World Journal. 2003; 3: 34–44. 10.3402/mehd.v23i0.19008.
  • Kaguni LS. DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem. 2004; 73: 293–320. 10.3402/mehd.v23i0.19008.
  • Pinz KG, Bogenhagen DF. The influence of the DNA polymerase gamma accessory subunit on base excision repair by the catalytic subunit. DNA Repair (Amst). 2006; 5: 121–8. 10.3402/mehd.v23i0.19008.