1,672
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota

&
Article: 30971 | Received 12 Jan 2016, Accepted 14 Jun 2016, Published online: 05 Jul 2016

References

  • Lyte M. The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses. 2010; 74: 634–8.
  • Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays. 2011; 33: 574–81.
  • Oleskin AV, Shenderov BA. Biopolitical approach to rehabilitation: potential role of microbial neurochemistry. Regen Med J. 2013; N1: 60–7. (in Russian)..
  • Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JT, Dinan TG. Gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014; 28: 1221–38.
  • El Aidy S, Stilling RM, Dinan TG, Cryan JT, Lyte M. Chapter 15. Microbiome to brain: unravelling the multidirectional axes of communication. Microbial endocrinology: interkingdom signaling in infectious disease and health. Advances in experimental medicine and biology 874. 2016; USA: Springer International Publishing AG. 301–36. doi: http://dx.doi.org/10.1007/978-3-319-20215_15 .
  • Norris V, Molina F, Gewirtz AT. Hypothesis: bacteria control host appetites. J Bacteriol. 2013; 195: 411–6.
  • Oleskin AV, El-Registan GI, Shenderov BA. Role of neuromediators in the functioning of the human microbiota: ‘Business Talks’ among microorganisms and the microbiota-host dialogue. Microbiology (Rus). 2016; 85: 1–24.
  • Dhelly NM, Poulin R, Thomas F. Biological warfare: microorganisms as drivers of host-parasite interactions. Infect Genet Evol. 2015; 34: 251–9.
  • Shenderov BA. Probiotic (symbiotic) bacterial languages. Anaerobe. 2011; 17: 490–5.
  • Shenderov BA, Midtvedt T. Epigenomic programming: a future way to health. Microbial Ecol Health Dis. 2014; 25 24145, doi: http://dx.doi.org/10.3402/mehd.v25.24145 .
  • Stilling RM, Bordenstein SR, Dinan TG, Cryan JF. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development?. Front Cell Infect Microbiol. 2014; 4: 147. doi: http://dx.doi.org/10.3389/fcimb.2014.001 [PubMed Abstract] [PubMed CentralFull Text].
  • Galland L. The gut microbiome and the brain. J Med Food. 2014; 17: 1261–72.
  • Lyte M. Microbial endocrinology and nutrition: a perspective on new mechanisms by which diet can influence gut-to brain-communication. Pharm Nutr. 2013; 1: 35–9.
  • Ciorba MA. A gastroenterologist's guide to probiotics. Clin Gastroenterol Hepatol. 2012; 10: 960–8.
  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, etal. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014; 11: 506–14.
  • Dinan TG, Cryan J. Regulation of the stress response by the gut microbiota: implications for psychoneuropharmacology. Psychoneuropharmacology. 2012; 37: 1369–78.
  • Liu WH, Chuang HL, Huang YT, Wu CC, Chou GT, Wang S, etal. Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav Brain Res. 2015; 298: 202–9. doi: http://dx.doi.org/10.1016/j.bbr2015.10.046 [PubMed Abstract].
  • Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013; 74: 720–6.
  • Hemarajata P, Versalovic J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol. 2013; 6: 39–51.
  • Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014; 38: 1–12.
  • Oleskin AV, Zhilenkova OG, Shenderov BA, Amerhanova AM, Kudrin VS, Klodt PM. Lactic-acid bacteria supplement fermented dairy products with human behavior-modifying neuroactive compounds. J Pharm Nutr Sci. 2014; 4: 199–206.
  • Palomar MM, Galdeano CM, Perdigón G. Influence of a probiotic lactobacillus strain on the intestinal ecosystem in a stress model mouse. Brain Behav Immunol. 2014; 35: 77–85.
  • Hylemon PB, Ridlon JM, Heidt P, Bienenstock J, Midtvedt T, Rush V, van der Waai D. Influence of diet on microbial production and utilization of H2, CH4 and H2S in the colon: physiological and pathophysiological consequences. The biological significance of gaseous biomarkers from the microbiota in the alimentary tract. Germany: Old Herborn University Seminar Monograph. 2008; 11–30.
  • Midtvedt T, Heidt P, Bienenstock J, Midtvedt T, Rush V, van der Waaij D. What do we know from germfree life? Basic knowledge about microbes and gas production regulator. The biological significance of gaseous biomarkers from the microbiota in the alimentary tract. 2008; Germany: Old Herborn University Seminar Monograph. 1–7.
  • Szabo C. Gaseotransmitters: new frontiers for translational science. Sci Transl Med. 2010; 2: 59ps54. doi: http://dx.doi.org/10.1126/scitranslmed.3000721 [PubMed Abstract] [PubMed CentralFull Text].
  • Althaus M. Gasotransmitters: novel regulators of epithelial Na+ transport?. Front Physiol. 2012; 3: 83. doi: http://dx.doi.org/10.3389/fphys.2012.00083 [PubMed Abstract] [PubMed CentralFull Text].
  • Althaus M, Urness KD, Clauss WG, Baines DL, Fronius M. The gasotransmitter hydrogen sulphide decreases Na+ transport across pulmonary epithelial cells. Br J Pharmacol. 2012; 166: 1946–63.
  • Tinajero-Trejo M, Jesse HE, Poole RK. Gasotransmitters, poisons, and antimicrobials: it's a gas, gas, gas!. F1000Prime Report. 2013; 5: 28. doi: http://dx.doi.org/10.12703/P5-28 .
  • Shenderov BA. Targets and effects of short chain fatty acids. J Mod Med Sci. 2013; 21–50. (in Russian)..
  • Siigur U, Norin KE, Allgood G, Schlagheck T, Midtvedt T. Concentrations and correlations of faecal short-chain fatty acids and faecal water content in man. Microb Ecol Health Dis. 1994; 7: 287–94.
  • Kimura H. Hydrogen Sulfide: from brain to gut. Antioxid Redox Signal. 2010; 12: 1111–23.
  • Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011; 3: 858–76.
  • Kimura H. Metabolic turnover of hydrogen sulfide. Front Physiol. 2012; 3: 101. doi: http://dx.doi.org/10.3389/fphys.2012.00101 [PubMed Abstract] [PubMed CentralFull Text].
  • MacFabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis. 2012; 23 19260, doi: http://dx.doi.org/10.3402/mehd.v23i0.19260 .
  • Frye RE, Rose S, Slattery J, MacFabe DF. Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome. Microb Ecol Health Dis. 2015; 26 27458, doi: http://dx.doi.org/10.3402/mehd.v26.27458 .
  • Frye RE, Slattery J, MacFabe DF, Allen-Vercoe E, Parker W, Rodakis J, etal. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microb Ecol Health Dis. 2015; 26 27878, doi: http://dx.doi.org/10.3402/mehd.v26.26878 .
  • Gadalla MM, Snyder SH. Hydrogen sulfide as a gasotransmitter. J Neurochem. 2010; 113: 14–26.
  • Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012; 92: 791–896.
  • Sitdikova GF, Zefirov AL. The hydrogen sulfide: from the sewers of Paris to the signal molecule. Nature (Russia). 2010; N9: 29–37.
  • Hezel MP, Weitzberg E. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 2015; 21: 7–16. doi: http://dx.doi.org/10.1111/odi.12157 [PubMed Abstract].
  • Triantafyllou K, Chang C, Pimentel M. Methanogens, methane and gastrointestinal motility. J Neurogastroenterol Motil. 2014; 20: 1–40.
  • Kim-Shapiro DB, Gladwin MT. Mechanisms of nitrite bioactivation. Nitric Oxide. 2014; 38: 58–68. doi: http://dx.doi.org/10.1016/j.niox.2013.11.002 [PubMed Abstract].
  • Farrugia G, Szurszewski JH. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology. 2014; 147: 303–13. doi: http://dx.doi.org/10.1053/j.gastro.2014.04.041 [PubMed Abstract] [PubMed CentralFull Text].
  • Sobko T. Influence of the microflora on gastrointestinal nitric oxide generation. Studies in newborn infants and germ-free animals. 2006; Stockholm: Karolinska Institutet. 50.
  • Schreiber F. Detection and function of nitric oxide in microbial communities. 2006; University of Bremen. MSc Thesis.
  • Lundberg JO, Weitzberg E. Biology of nitrogen oxides in the gastrointestinal tract. Gut. 2013; 62: 619–29.
  • Gusarov I, Gautier L, Smolentseva O, Shamovsky I, Eremina S, Mironov A, etal. Bacterial nitric oxide extends the lifespan of C. elegans . Cell. 2013; 152: 818–30.
  • Hyde ER, Luk B, Cron S, Kusic L, McCue T, Bauch T, etal. Characterization of the rat oral microbiome and the effects of dietary nitrate. Free Radic Biol Med. 2014; 77: 249–57. doi: http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.017 [PubMed Abstract].
  • Aleshkin VA, Voropaeva EA, Shenderov BA. Vaginal microbiota in healthy women and patients with bacterial vaginosis and nonspecific vaginitis. Microb Ecol Health Dis. 2006; 18: 71–4.
  • Ivashkin VT, Drapkina OM. Clinical importance of nitric oxide and heat shock proteins. 2001; Moscow: GEOTAR-MEDIA. 88 p. (in Russian)..
  • Makarov SV. Nitrite and nitrate – new look for small molecules. Nature (Russia). 2010; N7: 34–7.
  • Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, etal. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metabol. 2011; 13: 149–59.
  • Althaus M, Clauss WG. Gasotransmitters: novel regulators of ion channels and transporters. Front Physiol. 2013; 4: 27. doi: http://dx.doi.org/10.3389/fphys.2013.00027 [PubMed Abstract] [PubMed CentralFull Text].
  • Ryu YH, Baik JE, Yang JS, Kang SS, Im J, Yun CH, etal. Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int Immunopharmacol. 2009; 9: 127–33.
  • Zídek Z, Kmoníčková E, Kostecká P, Tlaskalová-Hogenová H. Decisive role of lipopolysaccharide in activating nitric oxide and cytokine production by the probiotic Escherichia coli strain Nissle 1917. Folia Microbiol. 2010; 55: 181–9.
  • Bueno M, Wang J, Mora AL, Gladwin MT. Nitrite signaling in pulmonary hypertension: mechanisms of bioactivation, signaling and therapeutics. Antioxidants Redox Signal. 2013; 18: 1797–809.
  • Midtvedt T, Midtvedt T, Bienenstock J, Heidt P, Rusch V, van der Waaij D. Defense mechanisms of the innate system: NO as gastrointestinal eco-regulator. Defense mechanisms of the innate system: influence of microbes. 2006; Germany: Old Herborn University Seminar. 113–16.
  • Bowman LAH, McLean S, Poole RK, Fukuto J. The diversity of microbial responses to nitric oxide and agents of nitrosative stress: close cousins but not identical twins. Adv Microb Physiol. 2011; 59: 135–219. [PubMed Abstract].
  • Sahakian AB, Jee SR, Pimentel M. Methane and the gastrointestinal tract. Dig Dis Sci. 2009; 55(8): 2135–43. doi: http://dx.doi.org/10.1007/s10620-009-1012-0 [PubMed Abstract].
  • Gusarov I, Shatalin K, Starodubtseva M, Nudler E. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science. 2009; 325: 1380–4.
  • Nelson RJ, Demas GE, Huang PL, Fishman MC, Dawson VL, Dawson TM, etal. Behavioral abnormalities in male mice lacking neuronal nitric oxide synthase. Nature. 1995; 378: 383–6.
  • Fang H, Caranto JD, Mendoza R, Taylor AB, Hart PJ, Kurtz DM Jr. Histidine ligand variants of a flavo-diiron protein: effects on structure and activities. J Biol Inorg Chem. 2012; 17: 1231–9.
  • Laver JR, McLean S, Bowman LAH, Harrison LJ, Read RC, Poole RK. Nitrosothiols in bacterial pathogens and pathogenesis. Antioxid Redox Signal. 2013; 18: 309–22.
  • Gusarov I, Nudler E. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci USA. 2005; 102: 13855–60.
  • Bryan NS, Alexander DD, Coughlin JR, Milkowski AL, Boffetta P. Ingested nitrate and nitrite and stomach cancer risk: an updated review. Food Chem Toxicol. 2012; 50: 3646–65.
  • Sindler AL, DeVan AE, Fleenor BS, Seals DR. Inorganic nitrite supplementation for healthy arterial aging. J Appl Physiol. 2014; 116: 463–77. doi: http://dx.doi.org/10.1152/japplphysiol.01100.2013 [PubMed Abstract] [PubMed CentralFull Text].
  • Robinson JL, Adolfsen KJ, Brynildsen MP. Deciphering nitric oxide stress in bacteria with quantitative modeling. Curr Opin Microbiol. 2014; 19: 16–24.
  • King GM, Weber CF. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol. 2007; 5: 107–18.
  • Clark RW, Lanz ND, Lee AJ, Kerby RL, Roberts GP, Burstyn JN. Unexpected NO-dependent DNA binding by the CooA homolog from Carboxydothermus hydrogenoformans . Proc Natl Acad Sci USA. 2006; 103: 891–6.
  • Berne JP, Lauzier B, Rochette L, Vergely C. Carbon monoxide protects against ischemia-reperfusion injury in vitro via antioxidant properties. Cell Physiol Biochem. 2012; 29: 475–84.
  • Zeynalov E, Dore S. Low doses of carbon monoxide protect against experimental focal brain ischemia. Neurotox Res. 2009; 15: 133–7.
  • Almeida AS, Figueiredo-Pereira C, Vieira HLA. Carbon monoxide and mitochondria-modulation of cell metabolism, redox response and cell death. Front Physiol. 2015; 6: 33. doi: http://dx.doi.org/10.3389/fphys.2015.00033 [PubMed Abstract] [PubMed CentralFull Text].
  • Peers C, Boyle JP, Scragg JL, Dallas ML, Al-Owais MM, Hettiarachchi NT, etal. Diverse mechanisms underlying the regulation of ion channels by carbon monoxide. Br J Pharmacol. 2015; 172: 1546–56.
  • Hettiarachchi NT, Boyle JP, Bauer CC, Dallas ML, Pearson HA, Hara S, etal. Peroxynitrite mediates disruption of Ca2+ homeostasis by carbon monoxide via Ca2+ ATPase degradation. Antioxid Redox Signal. 2012; 17: 744–55.
  • Smith H, Mann BE, Motterlini R, Poole RK. The carbon monoxide-releasing molecule, CORM-3 (Ru(CO)3Cl(glycinate)), targets respiration and oxidases in Campylobacter jejuni, generating hydrogen peroxide. IUBMB Life. 2011; 63: 63–71.
  • Wegiel B, Hanto DW, Otterbein LE. The social network of carbon monoxide in medicine. Trends Mol Med. 2013; 19: 3–11.
  • Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res. 2014; 114: 730–7.
  • Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol. 2012; 3: 448. doi: http://dx.doi.org/10.3389/fphys.2012.00448C [PubMed Abstract] [PubMed CentralFull Text].
  • Olas B. Hydrogen sulfide in signaling pathways. Clin Chim Acta. 2015; 439: 212–18. doi: http://dx.doi.org/10.1016/j.cca.2014.10.037 [PubMed Abstract].
  • Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science. 2011; 34: 86–90.
  • Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, etal. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell. 2015; 160: 132–44.
  • Linden DR. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal. 2014; 20: 818–30.
  • Bannenberg GL, Vieira HL. Therapeutic applications of the gaseous mediators carbon monoxide and hydrogen sulfide. Expert Opin Ther Pat. 2009; 19: 663–82.
  • Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal. 2009; 11: 205–14.
  • Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, etal. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun. 2013; 4 1366. doi: http://dx.doi.org/10.1038/ncomms2371 .
  • Ichinohe A, Kanaumi T, Takashima S, Enokido Y, Nagai Y, Kimura H. Cystathionine beta-synthase is enriched in the brains of Down's patients. Biochem Biophys Res Commun. 2005; 338: 1547–50.
  • Njie-Mbye YF, Opere CA, Chitnis M, Ohia SE. Hydrogen sulfide: role in ion channel and transporter modulation in the eye. Front Physiol. 2012; 3: 295. doi: http://dx.doi.org/10.3389/fphys.2012.00295 [PubMed Abstract] [PubMed CentralFull Text].
  • Pouokam E, Diener M. Modulation of ion transport across rat distal colon by cysteine. Front Physiol. 2012; 3: 43. doi: http://dx.doi.org/10.3389/fphys.2012.00043 [PubMed Abstract] [PubMed CentralFull Text].
  • Shenderov BA. Participation in carbohydrate, protein, lipid, nucleic acid and other compounds metabolism. Medical microbial ecology and functional food. Vol I. Moscow: Grant; 1998, pp. 85–105. (in Russian).
  • Richardson AJ, McKain N, Wallace RJ. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids. BMC Microbiol. 2013; 13: 6.
  • Burrus CJ. A biochemical rationale for the interaction between gastrointestinal yeast and autism. Med Hypotheses. 2012; 79: 784–5.
  • Cooper AJL. The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res. 2012; 37: 2439–55.
  • Gorg B, Schliess F, Haussinger D. Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy. Arch Biochem Biophys. 2013; 536: 158–63.
  • Ott P, Vilstrup H. Cerebral effects of ammonia in liver disease: current hypotheses. Metab Brain Dis. 2014; 29: 901–11.
  • Butterworth RF. Pathogenesis of hepatic encephalopathy and brain edema in acute liver failure. J Clin Exp Hepatol. 2015; 5(Suppl 1): 96–103.
  • Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci. 2012; 57: 2096–102.
  • Li L, Moore PK. An overview of the biological significance of endogenous gases: new roles for old molecules. Biochem Soc Trans. 2007; 35: 1138–41.
  • Takahashi N, Kozai D, Mori Y. TRP channels: sensors and transducers of gasotransmitter signals. Front Physiol. 2012; 3 324. doi: http://dx.doi.org/10.3389/fphys.2012.00324 .
  • Munoz MF, Puebla M, Figueroa XF. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca(2+) signaling. Front Cell Neurosci. 2015; 9 59. doi: http://dx.doi.org/10.3389/fncel.00059 .
  • Shenderov BA. The direction of development of gnotobiology: theoretical and practical aspects. J Dis Treat Prev. 2014; 1: 80–4. (in Russian).