794
Views
15
CrossRef citations to date
0
Altmetric
Review Articles

Potential of chromatin modifying compounds for the treatment of Alzheimer's disease

&
Article: 14980 | Received 29 Nov 2011, Accepted 26 Jan 2012, Published online: 20 Feb 2012

References

  • Campas-Moya C. Romidepsin for the treatment of cutaneous T-cell lymphoma. 2009; 45: 787-95.
  • Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. 2007; 25: 84-90.
  • Duvic M, Vu J. Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T-cell lymphoma. 2007; 16: 1111-20.
  • Grant C, Rahman F, Piekarz R, Peer C, Frye R, Robey RW et al. Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. 2010; 10: 997-1008.
  • Kwa FA, Balcerczyk A, Licciardi P, El-Osta A, Karagiannis TC. Chromatin modifying agents – the cutting edge of anticancer therapy. 2011; 16: 543-7.
  • Marks PA. Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. 2010; 1799: 717-25.
  • Marks PA, Xu WS. Histone deacetylase inhibitors: potential in cancer therapy. 2009; 107: 600-8.
  • Banerjee A, Trivedi CM, Damera G, Jiang M, Jester W, Hoshi T, et al.. Trichostatin A abrogates airway constriction, but not inflammation in mouse and human asthma models. . 2012feb; 46: 132–8.
  • Choi JH, Oh SW, Kang MS, Kwon HJ, Oh GT, Kim DY. Trichostatin A attenuates airway inflammation in mouse asthma model. 2005; 35: 89-96.
  • Antos CL, McKinsey TA, Dreitz M, Hollingsworth LM, Zhang CL, Schreiber K et al. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. 2003; 278: 28930-7.
  • Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. 2006; 98: 15-24.
  • Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. 2009; 10: 32-42.
  • Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. 2006; 113: 2579-88.
  • McKinsey TA, Olson EN. Dual roles of histone deacetylases in the control of cardiac growth. . 2004; 259: 132–41; discussion 141–5, 163–9..
  • Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT. Multiple roles of HDAC inhibition in neurodegenerative conditions. 2009; 32: 591-601.
  • Royce SG, Dang W, Ververis K, De Sampayo N, El-Osta A, Tang MLK, et al.. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease. . 2011Dec 1; 6: 1463–70.
  • Querfurth HW, LaFerla FM. Alzheimer's disease. 2010; 362: 329-44.
  • Davies CA, Mann DM, Sumpter PQ, Yates PO. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease. 1987; 78: 151-64.
  • Selkoe DJ. Alzheimer's disease is a synaptic failure. 2002; 298: 789-91.
  • Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DWJr et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease. 2001; 56: 127-9.
  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. 1991; 30: 572-80.
  • Bamberger ME, Landreth GE. Inflammation, apoptosis, and Alzheimer's disease. 2002; 8: 276-83.
  • Castellani RJ, Rolston RK, Smith MA. Alzheimer disease. 2010; 56: 484-546.
  • Butterfield DA, Griffin S, Munch G, Pasinetti GM. Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer's disease brain exists. 2002; 4: 193-201.
  • DeKosky ST. Pathology and pathways of Alzheimer's disease with an update on new developments in treatment. 2003; 51Suppl 1314-20.
  • Doraiswamy PM. Alzheimer's disease and the glutamate NMDA receptor. 2003; 37: 41-9.
  • Doraiswamy PM. The role of the N-methyl-D-aspartate receptor in Alzheimer's disease: therapeutic potential. 2003; 3: 373-8.
  • Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. 1998; 20: 615-26.
  • Cyr AR, Domann FE. The redox basis of epigenetic modifications: from mechanisms to functional consequences. 2011; 15: 551-89.
  • Wade PA, Pruss D, Wolffe AP. Histone acetylation: chromatin in action. 1997; 22: 128-32.
  • Roth SY, Denu JM, Allis CD. Histone acetyltransferases. 2001; 70: 81-120.
  • Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. 2009; 1789: 45-57.
  • Dokmanovic M, Marks PA. Prospects: histone deacetylase inhibitors. 2005; 96: 293-304.
  • Rosato RR, Grant S. Histone deacetylase inhibitors: insights into mechanisms of lethality. 2005; 9: 809-24.
  • Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. 2006; 6: 38-51.
  • Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. 2007; 26: 5541-52.
  • Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. 2007; 404: 1-13.
  • Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. 2000; 273: 793-8.
  • Rajendran R, Garva R, Krstic-Demonacos M, Demonacos C. Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. . 2011; 2011: 368276 Epub 2011..
  • Li X, Kazgan N. Mammalian sirtuins and energy metabolism. 2011; 7: 575-87.
  • Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. 2009; 460: 587-91.
  • Anekonda TS, Reddy PH. Neuronal protection by sirtuins in Alzheimer's disease. 2006; 96: 305-13.
  • Guarente L., Franklin H. Epstein Lecture: sirtuins, aging, and medicine. 2011; 364: 2235-44.
  • Tippmann F, Hundt J, Schneider A, Endres K, Fahrenholz F. Up-regulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin. 2009; 23: 1643-54.
  • Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. 2010; 142: 320-32.
  • Vingtdeux V, Marambaud P. Identification and biology of alpha-secretase. 2012; 120Suppl 134-45.
  • Bonda DJ, Lee HG, Camins A, Pallas M, Casadesus G, Smith MA et al. The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. 2011; 10: 275-9.
  • Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. 2010; 67: 953-66.
  • Heneka MT, O'Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer's disease. 2010; 117: 919-47.
  • Yang F, Zhang T, Ito Y. Large-scale separation of resveratrol, anthraglycoside A and anthraglycoside B from Polygonum cuspidatum Sieb. et Zucc by high-speed counter-current chromatography. 2001; 919: 443-8.
  • Yadav M, Jain S, Bhardwaj A, Nagpal R, Puniya M, Tomar R et al. Biological and medicinal properties of grapes and their bioactive constituents: an update. 2009; 12: 473-84.
  • Leifert WR, Abeywardena MY. Cardioprotective actions of grape polyphenols. 2008; 28: 729-37.
  • Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: a molecule whose time has come? And gone?. 1997; 30: 91-113.
  • Pervaiz S, Holme AL. Resveratrol: its biologic targets and functional activity. 2009; 11: 2851-97.
  • Anekonda TS. Resveratrol – a boon for treating Alzheimer's disease?. 2006; 52: 316-26.
  • Richard T, Pawlus AD, Iglesias ML, Pedrot E, Waffo-Teguo P, Merillon JM et al. Neuroprotective properties of resveratrol and derivatives. 2011; 1215: 103-8.
  • Jang JH, Surh YJ. Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. 2003; 34: 1100-10.
  • Han YS, Zheng WH, Bastianetto S, Chabot JG, Quirion R. Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. 2004; 141: 997-1005.
  • Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. 2005; 280: 37377-82.
  • Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM et al. Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. 2008; 28: 11500-10.
  • Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. 2007; 5: 981-9.
  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. 2003; 370: 737-49.
  • Yang XJ, Seto E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. 2003; 13: 143-53.
  • Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. 2006; 5: 769-84.
  • Mai A, Rotili D, Valente S, Kazantsev AG. Histone deacetylase inhibitors and neurodegenerative disorders: holding the promise. 2009; 15: 3940-57.
  • Gao YS, Hubbert CC, Yao TP. The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. 2010; 285: 11219-26.
  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al. HDAC6 is a microtubule-associated deacetylase. 2002; 417: 455-8.
  • Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. 2003; 115: 727-38.
  • Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J et al. HDAC2 negatively regulates memory formation and synaptic plasticity. 2009; 459: 55-60.
  • Li G, Jiang H, Chang M, Xie H, Hu L. HDAC6 alpha-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. 2011; 304: 1-8.
  • Ding H, Dolan PJ, Johnson GV. Histone deacetylase 6 interacts with the microtubule-associated protein tau. 2008; 106: 2119-30.
  • Perez M, Santa-Maria I, Gomez de Barreda E, Zhu X, Cuadros R, Cabrero JR et al. Tau – an inhibitor of deacetylase HDAC6 function. 2009; 109: 1756-66.
  • Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. 2009; 15: 112-9.
  • Chen S, Owens GC, Makarenkova H, Edelman DB. HDAC6 regulates mitochondrial transport in hippocampal neurons. 2010; 5: e10848.
  • Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. 2001; 1: 194-202.
  • Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. 2001; 20: 6969-78.
  • Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. 2003; 22: 3411-20.
  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. 2001; 276: 36734-41.
  • Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. 2003; 100: 4389-94.
  • Namdar M, Perez G, Ngo L, Marks PA. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. 2010; 107: 20003-8.
  • Parmigiani RB, Xu WS, Venta-Perez G, Erdjument-Bromage H, Yaneva M, Tempst P et al. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. 2008; 105: 9633-8.
  • Tang W, Luo T, Greenberg EF, Bradner JE, Schreiber SL. Discovery of histone deacetylase 8 selective inhibitors. 2011; 21: 2601-5.
  • Francis YI, Fa M, Ashraf H, Zhang H, Staniszewski A, Latchman DS et al. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer's disease. 2009; 18: 131-9.
  • Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. 2010; 35: 870-80.
  • Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. 2004; 43: 6899-908.
  • Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F et al. Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer's disease mouse models. 2008; 205: 2781-9.
  • Blaheta RA, Cinatl JJr Anti-tumor mechanisms of valproate: a novel role for an old drug. 2002; 22: 492-511.
  • Johannessen CU. Mechanisms of action of valproate: a commentatory. 2000; 37: 103-10.
  • Rosenberg G. The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees?. 2007; 64: 2090-103.
  • Fleisher AS, Truran D, Mai JT, Langbaum JB, Aisen PS, Cummings JL et al. Chronic divalproex sodium use and brain atrophy in Alzheimer disease. 2011; 77: 1263-71.
  • Ricobaraza A, Cuadrado-Tejedor M, Marco S, Perez-Otano I, Garcia-Osta A. Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. . 2010Nov 10. [Epub ahead of print]..
  • Ricobaraza A, Cuadrado-Tejedor M, Perez-Mediavilla A, Frechilla D, Del Rio J, Garcia-Osta A. Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model. 2009; 34: 1721-32.
  • Wiley JC, Pettan-Brewer C, Ladiges WC. Phenylbutyric acid reduces amyloid plaques and rescues cognitive behavior in AD transgenic mice. 2011; 10: 418-28.
  • Yao Z, Guo Z, Yang C, Tian Q, Gong CX, Liu G et al. Phenylbutyric acid prevents rats from electroconvulsion-induced memory deficit with alterations of memory-related proteins and tau hyperphosphorylation. 2010; 168: 405-15.
  • Mizukami T, Orihashi K, Herlambang B, Takahashi S, Hamaishi M, Okada K et al. Sodium 4-phenylbutyrate protects against spinal cord ischemia by inhibition of endoplasmic reticulum stress. 2010; 52: 1580-6.
  • Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. 2005; 93: 1087-98.
  • Wiley JC, Meabon JS, Frankowski H, Smith EA, Schecterson LC, Bothwell M et al. Phenylbutyric acid rescues endoplasmic reticulum stress-induced suppression of APP proteolysis and prevents apoptosis in neuronal cells. 2010; 5: e9135.
  • Brahe C, Vitali T, Tiziano FD, Angelozzi C, Pinto AM, Borgo F et al. Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients. 2005; 13: 256-9.
  • Marks PA. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. 2010; 19: 1049-66.
  • Salminen A, Tapiola T, Korhonen P, Suuronen T. Neuronal apoptosis induced by histone deacetylase inhibitors. 1998; 61: 203-6.
  • Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ. Distribution of histone deacetylases 1–11 in the rat brain. 2007; 31: 47-58.