1,124
Views
12
CrossRef citations to date
0
Altmetric
Research papers

Adaptations to chronic rapamycin in mice

, , , , , , , , , & show all
Article: 31688 | Received 21 Mar 2016, Accepted 21 Apr 2016, Published online: 27 May 2016

References

  • Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, etal. Rapamycin slows aging in mice. Aging Cell. 2012; 11: 675–82.
  • Zhang Y, Bokov A, Gelfond J, Soto V, Ikeno Y, Hubbard G, etal. Rapamycin extends life and health in C57BL/6 mice. J Gerontol A Biol Sci Med Sci. 2014; 69(2): 119–30.
  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, etal. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009; 460: 392–5. [PubMed Abstract] [PubMed CentralFull Text].
  • Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, De Cabo R, etal. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011; 66(2): 191–201.
  • Neff F, Flores-dominguez D, Ryan DP, Horsch M, Schroder S, Adler T, etal. Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest. 2013; 123(8): 1–2.
  • Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, etal. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell. 2014; 13(3): 468–77.
  • Hasty P, Livi CB, Dodds SG, Jones D, Strong R, Javors M, etal. ERapa restores a normal life span in a FAP mouse model. Cancer Prev Res. 2014; 7: 169–78.
  • Livi CB, Hardman RL, Christy BA, Dodds SG, Jones D, Williams C, etal. Rapamycin extends life span of Rb1 + /( mice by inhibiting neuroendocrine tumors. Aging (Albany NY). 2013; 5(2): 100–10.
  • Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, etal. Rapamycin extends maximal lifespan in cancer-prone mice. Am J Pathol. 2010; 176(5): 2092–7.
  • Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, etal. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle. 2011; 10(24): 4230–6.
  • Comas M, Toshkov I, Kuropatwinski KK, Chernova OB, Polinsky A, Blagosklonny MV, etal. New nanoformulation of rapamycin rapatar extends lifespan in homozygous p53 − /− mice by delaying carcinogenesis. Aging (Albany NY). 2012; 4(10): 715–22.
  • Komarova EA, Antoch MP, Novototskaya LR, Chernova OB, Paszkiewicz G, Leontieva OV, etal. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/−mice. Aging (Albany NY). 2012; 4(10): 709–14.
  • Dao V, Pandeswara S, Liu Y, Hurez V, Dodds S, Callaway D, etal. Prevention of carcinogen and inflammation-induced dermal cancer by oral rapamycin includes reducing genetic damage. Cancer Prev Res (Phila). 2015; 8(5): 400–9.
  • Rho O, Kiguchi K, Jiang G, Digiovanni J. Impact of mTORC1 inhibition on keratinocyte proliferation during skin tumor promotion in wild-type and BK5.AktWT mice. Mol Carcinog. 2013; 12: 1–12.
  • Saha A, Blando J, Tremmel L, DiGiovanni J. Effect of metformin, rapamycin, and their combination on growth and progression of prostate tumors in HiMyc mice. Cancer Prev Res (Phila). 2015; 8(7): 597–606.
  • Fujishita T, Aoki K, Lane HA, Aoki M, Taketo MM. Inhibition of the mTORC1 pathway suppresses intestinal polyp formation and reduces mortality in ApcDelta716 mice. Proc Natl Acad Sci USA. 2008; 105: 13544–9.
  • Piselli P, Serraino D, Segoloni GP, Sandrini S, Piredda GB, Scolari MP, etal. Risk of de novo cancers after transplantation: results from a cohort of 7217 kidney transplant recipients, Italy 1997–2009. Eur J Cancer. 2013; 49: 336–44.
  • Houghton PJ. Everolimus. Clin Cancer Res. 2010; 16: 1368–72.
  • Squillace RM, Miller D, Wardwell SD, Wang F, Clackson T, Rivera VM. Synergistic activity of the mTOR inhibitor ridaforolimus and the antiandrogen bicalutamide in prostate cancer models. Int J Oncol. 2012; 41(2): 425–32. [PubMed Abstract] [PubMed CentralFull Text].
  • Proud CG. Control of the translational machinery by amino acids. Am J Clin Nutr. 2014; 99: 231–6.
  • Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. Structure of the Human mTOR complex I and its implications for rapamycin inhibition. Mol Cell. 2010; 38: 768–74.
  • Aylett CHS, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, etal. Architecture of human mTOR complex 1. Science. 2016; 351(6268): 48–52.
  • Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N. eIF4E – from translation to transformation. Oncogene. 2004; 23: 3172–9.
  • Alain T, Sonenberg N, Topisirovic I. mTOR inhibitor efficacy is determined by the eIF4E/4E-BP ratio. Oncotarget. 2012; 3: 1491–2.
  • Gentilella A, Kozma SC, Thomas G. A liaison between mTOR signaling, ribosome biogenesis and cancer. Biochim Biophys Acta Gene Regul Mech. 2015; 1849(7): 812–20.
  • Chauvin C, Koka V, Nouschi A, Mieulet V, Hoareau-Aveilla C, Dreazen A, etal. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene. 2014; 33(4): 474–83.
  • Iadevaia V, Liu R, Proud CG. mTORC1 signaling controls multiple steps in ribosome biogenesis. Semin Cell Dev Biol. 2014; 36: 1–8.
  • Mayer C, Grummt I. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene. 2006; 25: 6384–91.
  • Meyuhas O, Dreazen A. Ribosomal protein S6 kinase from TOP mRNAs to cell size. Prog Mol Biol Transl Sci. 2009; 90: 109–53. [PubMed Abstract].
  • Khan MZI, Prebeg Ž, Kurjaković NA. pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. I. Manipulation of drug release using Eudragit® L100-55 and Eudragit® S100 combinations. J Control Release. 1999; 58: 215–22.
  • Albert V, Hall MN. mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol. 2015; 33: 55–66.
  • Liao CY, Rikke BA, Johnson TE, Gelfond JAL, Diaz V, Nelson JF. Fat maintenance is a predictor of the murine lifespan response to dietary restriction. Aging Cell. 2011; 10: 629–39.
  • Thoreen CC. Many roads from mTOR to eIF4F. Biochem Soc Trans. 2013; 41: 913–16.
  • Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A, etal. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci USA. 2010; 107(32): 14134–9.
  • Ueda T, Sasaki M, Elia AJ, Chio IIC, Hamada K, Fukunaga R, etal. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci USA. 2010; 107: 13984–90.
  • Hou J, Kam F, Proud CG, Wang S, Lam F, Proud CG, etal. Targeting Mnks for cancer therapy. Oncotarget. 2012; 3(2): 118–31.
  • Proud CG. Mnks, eIF4E phosphorylation and cancer. Biochim Biophys Acta. 2015; 1849(7): 766–73.
  • Bianchini A, Loiarro M, Bielli P, Busà R, Paronetto MP, Loreni F, etal. Phosphorylation of eIF4E by MNKs supports protein synthesis, cell cycle progression and proliferation in prostate cancer cells. Carcinogenesis. 2008; 29(12): 2279–88.
  • Marzec M, Liu X, Wysocka M, Rook AH, Odum N, Wasik MA. Simultaneous inhibition of mTOR-containing complex 1 (mTORC1) and MNK induces apoptosis of cutaneous T-cell Lymphoma (CTCL) cells. PLoS One. 2011; 6(9): 2–9.
  • Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, etal. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 2005; 65: 7052–8.
  • Wang X, Yue P, Chan C-B, Ye K, Ueda T, Watanabe-Fukunaga R, etal. Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3-kinase-dependent and Mnk-mediated eukaryotic translation initiation factor 4E phosphorylation. Mol Cell Biol. 2007; 27(21): 7405–13.
  • Zang C, Eucker J, Liu H, Müller A, Possinger K, Scholz CW. Concurrent inhibition of PI3-kinase and mTOR induces cell death in diffuse large B cell lymphomas, a mechanism involving down regulation of Mcl-1. Cancer Lett. 2013; 339(2): 288–97.
  • Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M, etal. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res. 2012; 72(24): 6468–76.
  • Decarlo L, Mestel C, Barcellos-Hoff M-H, Schneider RJ. eIF4E is a Feed-forward translational coactivator of TGFβ early pro-transforming events in breast epithelial cells. Mol Cell Biol. 2015
  • O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, etal. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006; 66(3): 1500–8.
  • Efeyan A, Sabatini DM. MTOR and cancer: many loops in one pathway. Curr Opin Cell Biol. 2010; 22(2): 169–76.
  • Lamming DW, Mihaylova MM, Katajisto P, Baar EL, Yilmaz OH, Hutchins A, etal. Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan. Aging Cell. 2014; 13: 911–17.
  • O'Leary MN, Schreiber KH, Zhang Y, Duc ACE, Rao S, Hale JS, etal. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1. PLoS Genet. 2013; 9(8): e1003708.
  • Anderson SJ, Lauritsen JPH, Hartman MG, Foushee AMD, Lefebvre JM, Shinton SA, etal. Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity. 2007; 26(6): 759–72.
  • Zhang Y, Duc A-CE, Rao S, Sun X-L, Bilbee AN, Rhodes M, etal. Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs. Dev Cell. United States. 2013; 24(4): 411–25.
  • Rao S, Lee S-Y, Gutierrez A, Perrigoue J, Thapa RJ, Tu Z, etal. Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood. 2012; 120(18): 3764–73.
  • Pérez-Ortín JE, Alepuz P, Chávez S, Choder M. Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol. 2013; 425(20): 3750–75.
  • Henras AK, Plisson-Chastang C, O'Donohue M-F, Chakraborty A, Gleizes P-E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA. 2015; 6: 225–42.
  • Nwagwu M, Nana M. Ribonucleic acid synthesis in embryonic chick muscle, rates of synthesis and half-lives of transfer and ribosomal RNA species. J Embryol Exp Morphol. 1980; 56: 253–67. [PubMed Abstract].
  • Dai DF, Karunadharma PP, Chiao YA, Basisty N, Crispin D, Hsieh EJ, etal. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell. 2014; 13: 529–39.
  • Yilmaz ÖH, Katajisto P, Lamming DW, Gültekin Y, Bauer-Rowe KE, Sengupta S, etal. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature. 2012; 486(7404): 490–5. [PubMed Abstract] [PubMed CentralFull Text].
  • Miller RA, Harrison DE, Astle CM, Floyd RA, Flurkey K, Hensley KL, etal. An aging interventions testing program: study design and interim report. Aging Cell. 2007; 6: 565–75.
  • Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, etal. Acarbose, 17-(-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014; 13(2): 273–82.
  • Flurkey K, Astle CM, Harrison DE. Life extension by diet restriction and N-acetyl-L-cysteine in genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2010; 65(12): 1275–84.