922
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Cardiovascular KATP channels and advanced aging

, , &
Article: 32517 | Received 06 Jun 2016, Accepted 14 Sep 2016, Published online: 11 Oct 2016

References

  • Vigen R, Maddox TM, Allen LA. Aging of the United States population: impact on heart failure. Curr Heart Fail Rep. 2012; 9(4): 369–74.
  • Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal. 2012; 16(12): 1492–526.
  • Lakatta EG. Cardiovascular reserve capacity in healthy older humans. Aging. 1994; 6(4): 213–23.
  • Lakatta EG, Yin FC. Myocardial aging: functional alterations and related cellular mechanisms. Am J Physiol. 1982; 242(6): H927–41.
  • Walker KE, Lakatta EG, Houser SR. Age associated changes in membrane currents in rat ventricular myocytes. Cardiovasc Res. 1993; 27(11): 1968–77.
  • Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a ‘set up’ for vascular disease. Circulation. 2003; 107(1): 139–46.
  • Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease. Circulation. 2003; 107(2): 346–54.
  • Lakatta EG. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation. 2003; 107(3): 490–7.
  • Lakatta EG. Age-associated cardiovascular changes in health: impact on cardiovascular disease in older persons. Heart Fail Rev. 2002; 7(1): 29–49.
  • Feridooni HA, Dibb KM, Howlett SE. How cardiomyocyte excitation, calcium release and contraction become altered with age. J Mol Cell Cardiol. 2015; 83: 62–72.
  • Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983; 305: 147–8.
  • Foster MN, Coetzee WA. KATP channels in the cardiovascular system. Physiol Rev. 2016; 96(1): 177–252.
  • Ashcroft SJ, Ashcroft FM. Properties and functions of ATP-sensitive K-channels. Cell Signal. 1990; 2(3): 197–214.
  • Zingman LV, Zhu Z, Sierra A, Stepniak E, Burnett CM, Maksymov G, etal. Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation. J Mol Cell Cardiol. 2011; 51(1): 72–81.
  • Ranki HJ, Crawford RM, Budas GR, Jovanovic A. Ageing is associated with a decrease in the number of sarcolemmal ATP-sensitive K+ channels in a gender-dependent manner. Mech Ageing Dev. 2002; 123(6): 695–705.
  • Bao L, Taskin E, Foster M, Ray B, Rosario R, Ananthakrishnan R, etal. Alterations in ventricular K(ATP) channel properties during aging. Aging Cell. 2013; 12(1): 167–76.
  • Institute of Laboratory Animal Resources (US). Committee on Animal Models for Research on Aging A. Mammalian models for research on aging. 1981; Washington, DC: National Academies Press.
  • Kefaloyianni E, Bao L, Rindler MJ, Hong M, Patel T, Taskin E, etal. Measuring and evaluating the role of ATP-sensitive K+ channels in cardiac muscle. J Mol Cell Cardiol. 2012; 52(3): 596–607.
  • Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature. 2006; 440(7083): 470–6.
  • Isomoto S, Kondo C, Kurachi Y. Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn J Physiol. 1997; 47(1): 11–39.
  • Finkel T. The metabolic regulation of aging. Nat Med. 2015; 21(12): 1416–23.
  • Yaniv Y, Juhaszova M, Sollott SJ. Age-related changes of myocardial ATP supply and demand mechanisms. Trends Endocrinol Metab. 2013; 24(10): 495–505.
  • Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS. Mitochondrial dysfunction in cardiac aging. Biochim Biophys Acta. 2015; 1847(11): 1424–33.
  • Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia – reperfusion, aging. and heart failure. J Mol Cell Cardiol. 2001; 33(6): 1065–89.
  • Hall JL, Mazzeo RS, Podolin DA, Cartee GD, Stanley WC. Exercise training does not compensate for age-related decrease in myocardial GLUT-4 content. J Appl Physiol (1985). 1994; 76(1): 328–32.
  • Cartee GD. Myocardial GLUT-4 glucose transporter protein levels of rats decline with advancing age. J Gerontol. 1993; 48(4): B168–70.
  • McMillin JB, Taffet GE, Taegtmeyer H, Hudson EK, Tate CA. Mitochondrial metabolism and substrate competition in the aging Fischer rat heart. Cardiovasc Res. 1993; 27(12): 2222–8.
  • Kates AM, Herrero P, Dence C, Soto P, Srinivasan M, Delano DG, etal. Impact of aging on substrate metabolism by the human heart. J Am Coll Cardiol. 2003; 41(2): 293–9.
  • Hyyti OM, Ledee D, Ning XH, Ge M, Portman MA. Aging impairs myocardial fatty acid and ketone oxidation and modifies cardiac functional and metabolic responses to insulin in mice. Am J Physiol Heart Circ Physiol. 2010; 299(3): H868–75.
  • Weiss JN, Lamp ST. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science. 1987; 238(4823): 67–9.
  • Yang JH, Yang L, Qu Z, Weiss JN. Glycolytic oscillations in isolated rabbit ventricular myocytes. J Biol Chem. 2008; 283(52): 36321–7.
  • Dhar-Chowdhury P, Harrell MD, Han SY, Jankowska D, Parachuru L, Morrissey A, etal. The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate kinase are components of the K(ATP) channel macromolecular complex and regulate its function. J Biol Chem. 2005; 280(46): 38464–70.
  • Hong M, Kefaloyianni E, Bao L, Malester B, Delaroche D, Neubert TA, etal. Cardiac ATP-sensitive K+ channel associates with the glycolytic enzyme complex. FASEB J. 2011; 25(7): 2456–67.
  • Kefaloyianni E, Lyssand JS, Moreno C, Delaroche D, Hong M, Fenyo D, etal. Comparative proteomic analysis of the ATP-sensitive K+ channel complex in different tissue types. Proteomics. 2013; 13(2): 368–78.
  • Bricknell OL, Opie LH. Glycolytic ATP and its production during ischemia in isolated Langendorff-perfused rat hearts. Recent Adv Stud Cardiac Struct Metab. 1976; 11: 509–19.
  • Jackson WF. Potassium channels and regulation of the microcirculation. Microcirculation. 1998; 5(2–3): 85–90.
  • Davies NW, Standen NB, Stanfield PR. ATP-dependent potassium channels of muscle-cells – their properties, regulation, and possible functions. J Bioenerg Biomembr. 1991; 23(4): 509–35.
  • Daut J, Maierrudolph W, Vonbeckerath N, Mehrke G, Gunther K, Goedelmeinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science. 1990; 247: 1341–4.
  • Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev. 1997; 77: 1165–232.
  • Dart C, Standen NB. Activation of ATP-dependent K+ channels by hypoxia in smooth muscle cells isolated from the pig coronary artery. J Physiol. 1995; 483(Pt 1): 29–39.
  • Bonev AD, Nelson MT. Muscarinic inhibition of ATP-sensitive K+channels by protein kinase-c in urinary bladder smooth muscle. Am J Physiol. 1993; 265: C1723–8.
  • Zhang H, Bolton TB. Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery. Br J Pharmacol. 1995; 114(3): 662–72.
  • Kajioka S, Kitamura K, Kuriyama H. Guanosine diphosphate activates an adenosine 5’-triphosphate-sensitive K+ channel in the rabbit portal vein. J Physiol. 1991; 444: 397–418.
  • Gollasch M, Bychkov R, Ried C, Behrendt F, Scholze S, Luft FC, etal. Pinacidil relaxes porcine and human coronary arteries by activating ATP-dependent potassium channels in smooth muscle cells. J Pharmacol Exp Ther. 1995; 275(2): 681–92.
  • Wakatsuki T, Nakaya Y, Inoue I. Vasopressin modulates K(+)-channel activities of cultured smooth muscle cells from porcine coronary artery. Am J Physiol. 1992; 263(2 Pt 2): H491–6.
  • Inoue I, Nakaya Y, Nakaya S, Mori H. Extracellular Ca-2+-activated K-channel in coronary-artery smooth-muscle cells and its role in vasodilation. FEBS Lett. 1989; 255(2): 281–4.
  • Kajioka S, Oike M, Kitamura K. Nicorandil opens a calcium-dependent potassium channel in smooth muscle cells of the rat portal vein. J Pharmacol Exp Ther. 1990; 254(3): 905–13.
  • Quayle JM, Bonev AD, Brayden JE, Nelson MT. Pharmacology of ATP-sensitive K+ currents in smooth muscle cells from rabbit mesenteric artery. Am J Physiol. 1995; 269(5 Pt 1): C1112–8.
  • Katnik C, Adams DJ. An ATP-sensitive potassium conductance in rabbit arterial endothelial cells. J Physiol. 1995; 485(Pt 3): 595–606.
  • Langheinrich U, Daut J. Hyperpolarization of isolated capillaries from guinea-pig heart induced by K+ channel openers and glucose deprivation. J Physiol. 1997; 502(Pt 2): 397–408.
  • Langheinrich U, Mederos y Schnitzler M, Daut J. Ca2+-transients induced by K+ channel openers in isolated coronary capillaries. Pflugers Arch. 1998; 435(3): 435–8.
  • Yoshida H, Feig JE, Morrissey A, Ghiu IA, Artman M, Coetzee WA. K ATP channels of primary human coronary artery endothelial cells consist of a heteromultimeric complex of Kir6.1, Kir6.2, and SUR2B subunits. J Mol Cell Cardiol. 2004; 37(4): 857–69.
  • Schnitzler MM, Derst C, Daut J, Preisig-Muller R. ATP-sensitive potassium channels in capillaries isolated from guinea-pig heart. J Physiol. 2000; 525(Pt 2): 307–17.
  • Janigro D, West GA, Gordon EL, Winn HR. ATP-sensitive K+ channels in rat aorta and brain microvascular endothelial cells. Am J Physiol. 1993; 265(3 Pt 1): C812–21.
  • Chatterjee S, Al-Mehdi AB, Levitan I, Stevens T, Fisher AB. Shear stress increases expression of a KATP channel in rat and bovine pulmonary vascular endothelial cells. Am J Physiol Cell Physiol. 2003; 285(4): C959–67.
  • Ishizaka H, Kuo L. Endothelial ATP-sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity. Am J Physiol. 1997; 273(1 Pt 2): H104–12.
  • Liu Q, Flavahan NA. Hypoxic dilatation of porcine small coronary arteries: role of endothelium and KATP-channels. Br J Pharmacol. 1997; 120(4): 728–34.
  • Gendron ME, Thorin E, Perrault LP. Loss of endothelial KATP channel-dependent, NO-mediated dilation of endocardial resistance coronary arteries in pigs with left ventricular hypertrophy. Br J Pharmacol. 2004; 143(2): 285–91.
  • Malester B, Tong X, Ghiu I, Kontogeorgis A, Gutstein DE, Xu J, etal. Transgenic expression of a dominant negative K(ATP) channel subunit in the mouse endothelium: effects on coronary flow and endothelin-1 secretion. FASEB J. 2007; 21(9): 2162–72.
  • Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, etal. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995; 270(5239): 1166–70.
  • Chutkow WA, Simon MC, Le Beau MM, Burant CF. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes. 1996; 45(10): 1439–45.
  • Inagaki N, Tsuura Y, Namba N, Masuda K, Gonoi T, Horie M, etal. Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J Biol Chem. 1995; 270(11): 5691–4.
  • Isomoto S, Kondo C, Yamada M, Matsumoto S, Higashiguchi O, Horio Y, etal. A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem. 1996; 271: 24321–4.
  • Yamada M, Isomoto S, Matsumoto S, Kondo C, Shindo T, Horio Y, etal. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel. J Physiol. 1997; 499(Pt 3): 715–20.
  • Chutkow WA, Pu J, Wheeler MT, Wada T, Makielski JC, Burant CF, etal. Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 K(ATP) channels. J Clin Invest. 2002; 110(2): 203–8.
  • Miki T, Suzuki M, Shibasaki T, Uemura H, Sato T, Yamaguchi K, etal. Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nat Med. 2002; 8(5): 466–72.
  • Tang Y, Long CL, Wang RH, Cui W, Wang H. Activation of SUR2B/Kir6.1 subtype of KATP improves pressure overload induced cardiac remodeling via protecting endothelial function. J Cardiovasc Pharmacol. 2010; 56(4): 345–53.
  • Matsuzaki I, Chatterjee S, Debolt K, Manevich Y, Zhang Q, Fisher AB. Membrane depolarization and NADPH oxidase activation in aortic endothelium during ischemia reflect altered mechanotransduction. Am J Physiol Heart Circ Physiol. 2005; 288(1): H336–43.
  • Marin J. Age-related changes in vascular responses: a review. Mech Ageing Dev. 1995; 79(2–3): 71–114.
  • Toyoda K, Fujii K, Takata Y, Ibayashi S, Kitazono T, Nagao T, etal. Age-related changes in response of brain stem vessels to opening of ATP-sensitive potassium channels. Stroke. 1997; 28(1): 171–5.
  • Ferrer M, Tejera N, Marin J, Balfagon G. Effect of age on the vasorelaxation elicited by cromakalim. Role of K+ channels and cyclic GMP. Life Sci. 1998; 63(23): 2071–8.
  • Kawano T, Tanaka K, Chi H, Kimura M, Kawano H, Eguchi S, etal. Effects of aging on isoflurane-induced and protein kinase A-mediated activation of ATP-sensitive potassium channels in cultured rat aortic vascular smooth muscle cells. J Cardiovasc Pharmacol. 2010; 56(6): 676–85.
  • Fujii K, Onaka U, Goto K, Abe I, Fujishima M. Impaired isoproterenol-induced hyperpolarization in isolated mesenteric arteries of aged rats. Hypertension. 1999; 34(2): 222–8.
  • Fujii K, Ohmori S, Tominaga M, Abe I, Takata Y, Ohya Y, etal. Age-related changes in endothelium-dependent hyperpolarization in the rat mesenteric artery. Am J Physiol. 1993; 265(2 Pt 2): H509–16.
  • Inoue I, Nagase H, Kishi K, Higuti T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature. 1991; 352(6332): 244–7.
  • Zhang DX, Chen YF, Campbell WB, Zou AP, Gross GJ, Li PL. Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ Res. 2001; 89(12): 1177–83.
  • Nakae Y, Kwok WM, Bosnjak ZJ, Jiang MT. Isoflurane activates rat mitochondrial ATP-sensitive K+ channels reconstituted in lipid bilayers. Am J Physiol Heart Circ Physiol. 2003; 284(5): H1865–71.
  • Bednarczyk P, Dolowy K, Szewczyk A. Matrix Mg2+ regulates mitochondrial ATP-dependent potassium channel from heart. FEBS Lett. 2005; 579(7): 1625–32.
  • Brustovetsky T, Shalbuyeva N, Brustovetsky N. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria. J Physiol. 2005; 568(Pt 1): 47–59.
  • Bednarczyk P, Barker GD, Halestrap AP. Determination of the rate of K(+) movement through potassium channels in isolated rat heart and liver mitochondria. Biochim Biophys Acta. 2008; 1777(6): 540–8.
  • Das M, Parker JE, Halestrap AP. Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria. J Physiol. 2003; 547(Pt 3): 893–902.
  • Halestrap AP, Clarke SJ, Khaliulin I. The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta. 2007; 1767(8): 1007–31.
  • Antonenko YN, Smith D, Kinnally KW, Tedeschi H. Single-channel activity induced in mitoplasts by alkaline pH. Biochim Biophys Acta. 1994; 1194(2): 247–54.
  • Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD. Reconstitution and partial purification of the glibenclamide- sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem. 1992; 267: 26062–9.
  • Bajgar R, Seetharaman S, Kowaltowski AJ, Garlid KD, Paucek P. Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. J Biol Chem. 2001; 276(36): 33369–74.
  • Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA. The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem. 1996; 271(15): 8796–9.
  • Bednarczyk P, Kicinska A, Kominkova V, Ondrias K, Dolowy K, Szewczyk A. Quinine inhibits mitochondrial ATP-regulated potassium channel from bovine heart. J Membr Biol. 2004; 199(2): 63–72.
  • Wojtovich AP, Williams DM, Karcz MK, Lopes CM, Gray DA, Nehrke KW, etal. A novel mitochondrial K(ATP) channel assay. Circ Res. 2010; 106(7): 1190–6.
  • Coetzee WA. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther. 2013; 140(2): 167–75.
  • Suzuki M, Kotake K, Fujikura K, Inagaki N, Suzuki T, Gonoi T, etal. Kir6.1: a possible subunit of ATP-sensitive K+ channels in mitochondria. Biochem Biophys Res Commun. 1997; 241: 693–7.
  • Wojtovich AP, Urciuoli WR, Chatterjee S, Fisher AB, Nehrke K, Brookes PS. Kir6.2 is not the mitochondrial KATP channel but is required for cardioprotection by ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2013; 304(11): H1439–45.
  • Ng KE, Schwarzer S, Duchen MR, Tinker A. The intracellular localization and function of the ATP-sensitive K+ channel subunit Kir6.1. J Membr Biol. 2010; 234(2): 137–47.
  • Foster DB, Ho AS, Rucker J, Garlid AO, Chen L, Sidor A, etal. Mitochondrial ROMK channel is a molecular component of MitoKATP. Circ Res. 2012; 111(4): 446–54.
  • Ye B, Kroboth SL, Pu JL, Sims JJ, Aggarwal NT, McNally EM, etal. Molecular identification and functional characterization of a mitochondrial sulfonylurea receptor 2 splice variant generated by intraexonic splicing. Circ Res. 2009; 105(11): 1083–93.
  • Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016; 61(5): 654–66.
  • Tepp K, Timohhina N, Puurand M, Klepinin A, Chekulayev V, Shevchuk I, etal. Bioenergetics of the aging heart and skeletal muscles: modern concepts and controversies. Ageing Res Rev. 2016; 28: 1–14.
  • Shigaeva MI, Gritsenko EN, Murzaeva SV, Gorbacheva OS, Talanov E, Mironova GD. [Age-related changes in the functioning of the mitochondrial potassium-transporting system]. Biofizika. 2010; 55(6): 1030–7.
  • McCully JD, Rousou AJ, Parker RA, Levitsky S. Age- and gender-related differences in mitochondrial oxygen consumption and calcium with cardioplegia and diazoxide. Ann Thorac Surg. 2007; 83(3): 1102–9.
  • Jahangir A, Ozcan C, Holmuhamedov EL, Terzic A. Increased calcium vulnerability of senescent cardiac mitochondria: protective role for a mitochondrial potassium channel opener. Mech Ageing Dev. 2001; 122(10): 1073–86.
  • Grimmsmann T, Rustenbeck I. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria. Br J Pharmacol. 1998; 123(5): 781–8.
  • Schafer G, Wegener C, Portenhauser R, Bojanovski D. Diazoxide, an inhibitor of succinate oxidation. Biochem Pharmacol. 1969; 18: 2678–81.
  • Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J. K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol. 2002; 542(Pt 3): 735–41.
  • Anastacio MM, Kanter EM, Keith AD, Schuessler RB, Nichols CG, Lawton JS. Inhibition of succinate dehydrogenase by diazoxide is independent of the ATP-sensitive potassium channel subunit sulfonylurea type 1 receptor. J Am Coll Surg. 2013; 216(6): 1144–9.
  • Wojtovich AP, Smith CO, Haynes CM, Nehrke KW, Brookes PS. Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. Biochim Biophys Acta. 2013; 1827(5): 598–611.
  • Liu B, Zhu X, Chen CL, Hu K, Swartz HM, Chen YR, etal. Opening of the mitoKATP channel and decoupling of mitochondrial complex II and III contribute to the suppression of myocardial reperfusion hyperoxygenation. Mol Cell Biochem. 2010; 337(1–2): 25–38.
  • Gerstenblith G, Lakatta EG, Weisfeldt ML. Age changes in myocardial function and exercise response. Prog Cardiovasc Dis. 1976; 19(1): 1–21.
  • Sudhir R, Sukhodub A, Du Q, Jovanovic S, Jovanovic A. Ageing-induced decline in physical endurance in mice is associated with decrease in cardiac SUR2A and increase in cardiac susceptibility to metabolic stress: therapeutic prospects for up-regulation of SUR2A. Biogerontology. 2011; 12(2): 147–55.
  • Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, etal. Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci USA. 2002; 99(20): 13278–83.
  • Tong X, Porter LM, Liu G, Dhar-Chowdhury P, Srivastava S, Pountney DJ, etal. Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits. Am J Physiol Heart Circ Physiol. 2006; 291(2): H543–51.
  • Brown DA, Chicco AJ, Jew KN, Johnson MS, Lynch JM, Watson PA, etal. Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol. 2005; 569(Pt 3): 913–24.
  • Kraljevic J, Hoydal MA, Ljubkovic M, Moreira JB, Jorgensen K, Ness HO, etal. Role of KATP channels in beneficial effects of exercise in ischemic heart failure. Med Sci Sports Exerc. 2015; 47(12): 2504–12.
  • Reyes S, Park S, Johnson BD, Terzic A, Olson TM. KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response. Hum Genet. 2009; 126(6): 779–89.
  • Boengler K, Schulz R, Heusch G. Loss of cardioprotection with ageing. Cardiovasc Res. 2009; 83(2): 247–61.
  • Peart JN, Pepe S, Reichelt ME, Beckett N, See Hoe L, Ozberk V, etal. Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp Gerontol. 2014; 50: 72–81.
  • Ramasamy R, Oates PJ, Schaefer S. Aldose reductase inhibition protects diabetic and nondiabetic rat hearts from ischemic injury. Diabetes. 1997; 46(2): 292–300.
  • Miki T, Itoh T, Sunaga D, Miura T. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol. 2012; 11: 67.
  • Schulman D, Latchman DS, Yellon DM. Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2001; 281(4): H1630–6.
  • Przyklenk K, Maynard M, Darling CE, Whittaker P. Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J Am Coll Cardiol. 2008; 51(14): 1393–8.
  • Garnier-Raveaud S, Faury G, Mazenot C, Cand F, Godin-Ribuot D, Verdetti J. Highly protective effects of chronic oral administration of nicorandil on the heart of ageing rats. Clin Exp Pharmacol Physiol. 2002; 29(5–6): 441–8.
  • Liu J, Long C, Ji B, Zhang H, Wen F. Myocardial protective effects of nicorandil, an opener of potassium channels on senile rat heart. Perfusion. 2006; 21(3): 179–83.
  • Herman EH, Zhang J, Chadwick DP, Ferrans VJ. Age dependence of the cardiac lesions induced by minoxidil in the rat. Toxicology. 1996; 110(1–3): 71–83.
  • McCully JD, Toyoda Y, Wakiyama H, Rousou AJ, Parker RA, Levitsky S. Age- and gender-related differences in ischemia/reperfusion injury and cardioprotection: effects of diazoxide. Ann Thorac Surg. 2006; 82(1): 117–23.
  • Abete P, Cacciatore F, Testa G, Della-Morte D, Galizia G, de Santis D, etal. Ischemic preconditioning in the aging heart: from bench to bedside. Ageing Res Rev. 2010; 9(2): 153–62.
  • Adam T, Sharp S, Opie LH, Lecour S. Loss of cardioprotection with ischemic preconditioning in aging hearts: role of sirtuin 1?. J Cardiovasc Pharmacol Ther. 2013; 18(1): 46–53.
  • van den Munckhof I, Riksen N, Seeger JP, Schreuder TH, Borm GF, Eijsvogels TM, etal. Aging attenuates the protective effect of ischemic preconditioning against endothelial ischemia-reperfusion injury in humans. Am J Physiol Heart Circ Physiol. 2013; 304(12): H1727–32.
  • Ananthakrishnan R, Li Q, Gomes T, Schmidt AM, Ramasamy R. Aldose reductase pathway contributes to vulnerability of aging myocardium to ischemic injury. Exp Gerontol. 2011; 46(9): 762–7.
  • Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal injury in ischemic myocardium. Circulation. 1986; 74: 1124.
  • Lee TM, Su SF, Chou TF, Lee YT, Tsai CH. Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation. 2002; 105(3): 334–40.
  • Goto M, Cohen MV, Downey JM. The role of protein kinase C in ischemic preconditioning. Ann N Y Acad Sci. 1996; 793: 177–90.
  • Turrell HE, Rodrigo GC, Norman RI, Dickens M, Standen NB. Phenylephrine preconditioning involves modulation of cardiac sarcolemmal K(ATP) current by PKC delta, AMPK and p38 MAPK. J Mol Cell Cardiol. 2011; 51(3): 370–80.
  • Yang HQ, Foster MN, Jana K, Ho J, Rindler MJ, Coetzee WA. Plasticity of sarcolemmal KATP channel surface expression during ischemia and ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2016; 310(11): H1558–66. doi: http://dx.doi.org/10.1152/ajpheart.00158.2016.
  • Headrick JP, Willems L, Ashton KJ, Holmgren K, Peart J, Matherne GP. Ischaemic tolerance in aged mouse myocardium: the role of adenosine and effects of A1 adenosine receptor overexpression. J Physiol. 2003; 549(Pt 3): 823–33.
  • Karamichalakis N, Letsas KP, Vlachos K, Georgopoulos S, Bakalakos A, Efremidis M, etal. Managing atrial fibrillation in the very elderly patient: challenges and solutions. Vasc Health Risk Manag. 2015; 11: 555–62.
  • Nantsupawat T, Nugent K, Phrommintikul A. Atrial fibrillation in the elderly. Drugs Aging. 2013; 30(8): 593–601.
  • Mirza M, Strunets A, Shen WK, Jahangir A. Mechanisms of arrhythmias and conduction disorders in older adults. Clin Geriatr Med. 2012; 28(4): 555–73.
  • Hatch F, Lancaster MK, Jones SA. Aging is a primary risk factor for cardiac arrhythmias: disruption of intracellular Ca2+ regulation as a key suspect. Expert Rev Cardiovasc Ther. 2011; 9(8): 1059–67.
  • Olson TM, Alekseev AE, Moreau C, Liu XK, Zingman LV, Miki T, etal. KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2007; 4(2): 110–6.
  • Delaney JT, Muhammad R, Blair MA, Kor K, Fish FA, Roden DM, etal. A KCNJ8 mutation associated with early repolarization and atrial fibrillation. Europace. 2012; 14(10): 1428–32.
  • Balana B, Dobrev D, Wettwer E, Christ T, Knaut M, Ravens U. Decreased ATP-sensitive K(+) current density during chronic human atrial fibrillation. J Mol Cell Cardiol. 2003; 35(12): 1399–405.
  • Morita N, Lee JH, Bapat A, Fishbein MC, Mandel WJ, Chen PS, etal. Glycolytic inhibition causes spontaneous ventricular fibrillation in aged hearts. Am J Physiol Heart Circ Physiol. 2011; 301(1): H180–91.
  • Weiss JN, Lamp ST. Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis. J Gen Physiol. 1989; 94(5): 911–35.
  • Schultz MB, Sinclair DA. Why NAD(+) Declines during Aging: it's destroyed. Cell Metab. 2016; 23(6): 965–6.
  • Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev. 2015; 146–8: 28–41.