91
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Influence of vascular plant photosynthetic rate on CH4 emission from peat monoliths from southern boreal Sweden

, &
Pages 215-220 | Published online: 26 Jan 2017

References

  • Bartlett, K. B. & Harriss, R. C. 1993: Review and assessment of methane emissions from wetlands. Chemosphere 26, 261–320.
  • Billings, W. D., Luken, J. O. , Mortensen, D. A. & Peterson, K. M. 1982: Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53, 7-11.
  • Bubier, J. L. 1995: The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. J. Ecol. 83, 403–420.
  • Cao, M., Marshall, S. & Gregson, K. 1996. Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. J. Geophys. Res, 101(D9), 14,399-14,414.
  • Chanton, J. P., Bauer, J. E., Glaser, P. A., Siegel, D. I., Kelley, C. A., Tyler, S. C., Romanowicz, E. H. & Lazrus, A. 1995: Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochim. Costnochim. Ada 59, 3663–3668.
  • Chanton, J. P. & Dacey, J. W. H. 1991: Effects of vegetation on methane flux, reservoirs, and carbon isotopic composition. In T. D. Sharkey et al. (eds.): Trace gas emissions by plants. Pp. 65-92. San Diego: Academic Press.
  • Chanton, I. P. & Whiting, G. J. 1995: Trace gas exchange in freshwater and coastal marine environments: ebullition and transport by plants. In P. A. Matson & R. C. Harriss (eds.): Measuring emissions from soil and water. Pp. 98-125. Oxford: Blackwell Science.
  • Christensen, T. R., Friborg, T., Sommerkorn, M., Kaplan, J., Illeris, L., SOgaard, H., NordstrOm, C. & Jonasson, S. in press: Trace gas exchange in a high Arctic valley, 1: variations in CO2 and CH4 flux between tundra vegetation types. Glob. Biogeochem. Cycles.
  • Christensen, T. R., Jonasson, S., Callaghan, T. V. & Havstrom, M. 1995: Spatial variation in high-latitude methane flux along a transect across Siberian and European tundra environments. . 1. Geophys. Res. 100(D10), 21,035-21,045.
  • Christensen, T. R., Jonasson, S., Callaghan, T. V. & Havstrom, M. 1999: On the potential CO2 release from tundra soils in a changing climate. Appl. Soil Ecol. 11, 127–134.
  • Christensen, T. R., Prentice, I. C., Kaplan, J., Haxeltine, A. & Sitch, S. 1996. Methane flux from northern wetlands and tundra. An ecosystem source modelling approach. Tellus 48B, 652–661.
  • Daulat, W. E. & Clymo, R. S. 1998: Effects of temperature and watertable on the efflux of methane from peatland surface cores. Atmos. Environ. 32 (19), 3207–3218.
  • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P. & Fraser, P. J. 1991: Three-dimensional model synthesis of the global methane budget. J. Geophys. Res. 96(D7), 13,033-13,065.
  • Harriss, R., Bartlett, K., Frolking, S. & Crill, P. 1993: Methane emissions from northern high-latitude wetlands. In R. S. Oremland (ed.): Biogeochemistry of global change: radia-tively active trace gases. Pp. 449-486. New York: Chapman & Hall.
  • Hogg, E. H. 1993: Decay potential of hummock and hollow sphagnum peats at different depths in a Swedish raised bog. Oikos 66, 269–278.
  • Malmer, N. 1962: Studies on mire vegetation in the archaean area of southwestern Götaland (south Sweden). Opera Bot. 7 (1), 322 pp.
  • Matthews, E. & Fung, I. 1987: Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob. Biogeochem. Cycles. 1, 61–86.
  • Oremland, R. S. 1988: Biogeochemistry of methanogenic bacteria. In A. J. B. Zehnder (ed.): Biology of anaerobic microorganisms. Pp. 641-703. New York: John Wiley & Sons.
  • Saarinen, T. 1996: Biomass and production of two vascular plants in a boreal mesotrophic fen. Can. J. Bot. 74, 934–938.
  • Saarinen, T., Tolonen, K. & Vasander, H. 1992: Use of '4C labelling to measure below-ground biomass of mire plants. Suo. 43, 245–247.
  • Schimel, J. P. 1995: Plant transport and methane production as controls on methane flux from Arctic wet meadow tundra. Biogeochemistry 28, 183–200.
  • Schütz, H., Schröder, P. & Rennenberg, H. 1991: Role of plants in regulating the methane flux to the atmosphere. In T. D. Sharkey et al. (eds.): Trace gas emissions by plants. Pp. 29-63. San Diego: Academic Press.
  • Shannon, R. D., White, J. R., Lawson, J. E. & Gilmour, B. S. 1996: Methane efflux from emergent vegetation in peatlands. J. Ecol. 84, 239–246.
  • Ström, L., Olsson, T. & Tyler, G. 1994: Differences between calcifuge and acidifuge plants in root exudation of low-molecular organic acids. Plant Soil 167, 239–245.
  • Sundh, I., Nilsson, M., Granberg, G. & Svensson, B. H. 1994: Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. Microbiol. Ecol. 27, 253–265.
  • Thomas, K. L., Benstead, J., Davies, K. L. & Lloyd, D. 1996: Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biol. Biochem. 28 (1), 17–23.
  • Torn, M. S. & Chapin III, F. S. 1993: Environmental and biotic controls over methane flux from Arctic tundra. Chemosphere 26, 357–368.
  • Tyler, S. C., Bilek, R. S., Sass, R. L. & Fisher, F. M. 1997: Methane oxidation and pathways of production in a Texas paddy field deduced from measurements of flux, 613C, and SD of CH4. Glob. Biogeochem. Cycles 11,323-348.
  • Waddington, J. M., Roulet, N. T. & Swanson, R. V. 1996: Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J. Geophys. Res. 101(D17), 22,775-22,785.
  • Whiting, G. J. & Chanton, J. P. 1992: Plant-dependent Cfla emission in a subarctic Canadian fen. Glob. Biogeochem. Cycles 6, 225–231.