424
Views
2
CrossRef citations to date
0
Altmetric
Thematic cluster. Climate drivers of the North: the Laptev Sea System

Impact of Laptev Sea flaw polynyas on the atmospheric boundary layer and ice production using idealized mesoscale simulations

, &
Article: 7210 | Published online: 31 May 2011

References

  • Barber D.G. & Massom R.A. 2007. The role of sea ice in Arctic and Antarctic polynyas. In W.O. Smith Jr. & D.G. Barber (eds.): Polynyas: windows to the world. Pp. 1–43. Amsterdam: Elsevier.
  • Bareiss J. & Görgen K. 2005. Spatial and temporal variability of sea ice in the Laptev Sea: analyses and review of satellite passive-microwave data and model results, 1979 to 2002. Global and Planetary Change 48, 28–54.
  • Charnock H. 1955. Wind stress over a water surface. The Quarterly Journal of the Royal Meteorological Society 81, 639–640.
  • Dare R.A. & Atkinson B.W. 2000. Atmospheric response to spatial variations in concentration and size of polynyas in the southern ocean sea-ice zone. Boundary-Layer Meteorology 94, 65–88.
  • Dethleff D., Loewe P. & Kleine E. 1998. The Laptev Sea flaw lead-detailed investigation on ice formation and export during 1991/1992 winter season. Cold Regions Science and Technology 27, 225–243.
  • Dmitrenko I.A., Tyshko K.N., Kirillov S.A., Eicken H., Hole-mann J.A. & Kassens H. 2005. Impact of flaw polynyas on the hydrography of the Laptev Sea. Global and Planetary Change 48, 9–27.
  • Doms G., Fostner J., Heise E., Herzog H.-J., Raschendorfer M., Reinhardt T., Ritter B., Schrodin R., Schulz J.-P. & Vogel G. 2007. Description of the nonhydrostatic regional model LM. Part II: physical parameterization. Offenbachom Main, Germany: Deutscher Wetterdienst.
  • Esau I.N. 2007. Amplification of turbulent exchange over wide Arctic leads: large-eddy simulation study. Journal of Geophy-sical Research-Atmospheres 112, D08109, doi: 10.1029/2006JD007225.
  • Gallee H. 1997. Air-sea interactions over Terra Nova Bay during winter: simulation with a coupled atmosphere-polynya model. Journal of Geophysical Research-Atmospheres 102, 13835–13849.
  • Hastings D. A., Dunbar P.K., Elphingstone G.M., Bootzan M., Murakami H., Maruyama H., Masaharu H., Holland P., Payne J., Bryant N.A., Logan T.L., Muller J.-P., Schreier G. & MacDonald J.S. (eds.) 1999. The Global Land One-Kilometre Base Elevation (GLOBE) digital elevation model. Version 1.0. Boulder, CO: National Geophysical Data Centre, National Oceanic and Atmospheric Administration.
  • Hebbinghaus H. & Heinemann G. 2006. LM simulations of the Greenland boundary layer, comparison with local measurements and SNOWPACK simulations of drifting snow. Cold Regions Science and Technology 46, 36–51.
  • Hebbinghaus H., Schlfinzen H. & Dierer S. 2007. Sensitivity studies on vortex development over a polynya. Theoretical and Applied Climatology 88, 1–16.
  • Heinemann G. 1996. On the development of wintertime mesoscale cyclones near the sea ice front in the Arctic and Antarctic. The Global Atmosphere and Ocean System 4, 89–123.
  • Heinemann G. 1997. Idealized simulations of the Antarctic katabatic wind system with a three-dimensional mesoscale model. Journal of Geophysical Research-Atmospheres 102, 13825–13834.
  • Heinemann G. 2003. Forcing and feedback mechanisms between the katabatic wind and sea ice in the coastal areas of polar ice sheets. The Global Atmosphere and Ocean System 9, 169–201.
  • Heinemann G. & Klein T. 2003. Simulations of topographically forced mesocyclones in the Weddell Sea and the Ross Sea region of Antarctica. Monthly Weather Review 131, 302–316.
  • Heise E., Ritter B. & Schrodin R. 2006. Operational implementa-tion of the multilayer soil model. COSMO Technical Reports No. 9. Offenbach am Main, Germany: Consortium for Small-Scale Modelling.
  • Johnson M.A. & Polyakov I.V. 2001. The Laptev Sea as a source for recent Arctic Ocean salinity changes. Geophysical Research Letters 28, 2017–2020.
  • Kineman J. & Hastings D. 1992. Monthly generalized global vegetation index from NESDIS NOAA-9 weekly GVI data (Apr 1985-Dec 1988). Boulder, CO: National Geophysical Data Centre, National Oceanic and Atmospheric Administration.
  • Klein T. & Heinemann G. 2001. On the forcing mechanisms of mesocyclones in the eastern Weddell Sea region, Antarctica: process studies using a mesoscale numerical model. Meteor-ologische Zeitschrift 10, 113–122.
  • Klein T., Heinemann G. & Gross P. 2001. Simulation of the katabatic flow near the Greenland ice margin using a high-resolution non-hydrostatic model. Meteorologische Zeits-chrift 10, 331–339.
  • Lupkes C., Gryanik V.M., Witha B., Gryschka M., Raasch S. & Gollnik T. 2008. Modelling convection over Arctic leads with LES and a non-eddy-resolving micro-scale model. Journal of Geophysical Research—Oceans 113, C09028, doi: 10.1029/2007JC004099.
  • Lupkes C., Vihma T., Birnbaum G. & Wacker U. 2008. Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night. Geophysical Research Letters 35, L03805, doi: 10.1029/2007GL032461.
  • Massom R.A, Harris P.T., Michael K. & Potter M.J. 1998. The distribution and formative processes of latent heat polynyas in East Antarctica. Annals of Glaciology 27, 420–426.
  • Parmiggiani E 2006. Fluctuations of Terra Nova Bay polynya as observed by active (ASAR) and passive (AMSR-E) microwave radiometers. International Journal of Remote Sen-sing 27, 2459–2469.
  • Pease C.H. 1987. The size of wind-driven coastal polynyas. Journal of Geophysical Research—Oceans 92, 7049–7059.
  • Ritter B. & Geleyn J.F. 1992. A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Monthly Weather Review 120, 303–325.
  • Schröder D., Heinemann G. & Willmes S. 2011. The impact of a thermodynamic sea-ice module in the COSMO numerical weather prediction model on simulations for the Laptev Sea, Siberian Arctic. Polar Research 30, article no. 6334, doi: 10.3402/polar.v30i0.6334 (this volume).
  • Spreen G., Kaleschke L. & Heygster G. 2007. Sea ice remote sensing using AMSR—E 89 GHz channels. Journal of Geo-physical Research—Oceans 113, CO2503, doi: 10.1029/2005JC003384.
  • Steppeler J., Doms G., Schättler U., Bitzer H.W., Gassmann A., Damrath U. & Gregoric G. 2003. Meso-gamma scale fore-casts using the non-hydrostatic model LM. Meteorology and Atmospheric Physics 82, 75–96.
  • Tietdke M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review 117, 1779–1800.
  • Wacker U., Jayaraman Potty K.V., Liipkes C., Hartmann J. & Raschendorfer M. 2005. A case study on a polar cold air outbreak over Fram Strait using a mesoscale weather prediction model. Boundary-Layer Meteorology 117, 301–336.
  • Weinbrecht S. & Raasch S. 2001. High-resolution simulations of the turbulent flow in the vicinity of an Arctic lead. Journal of Geophysical Research—Oceans 106, 27035–27046.
  • Willmes S., Adams S., Schroder D. & Heinemann G. 2011. Spatio-temporal variability of polynya dynamics and ice production in the Laptev Sea between the winters of 1979/80 and 2007/08. Polar Research 30, article no. 5971, doi: 10.3402/polar.v30i0.5971 (this volume).
  • Zakharov V.F. 1966. The role of flaw leads off the edge of fast ice in the hydrological and ice regime of the Laptev Sea. Oceanology 6, 815–821.
  • Zobler L. 1986. A world soil file for global climate modelling. NASA Technical Memorandum 87802. Washington, DC: National Aeronautical and Space Administration.