505
Views
1
CrossRef citations to date
0
Altmetric
Research/review articles

Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production

, , , , , & show all
Article: 18507 | Published online: 20 Dec 2012

References

  • Acinas S.G. Antón J. Rodríguez-Valera F. Diversity of free-living and attached bacteria in offshore western Mediterranean waters as depicted by analysis of genes encoding 16s rRNA. Applied and Environmental Microbiology. 1999; 65: 514–522.
  • Bercovich A, Vázquez S.C, Yankilevich P, Coria S.H, Foti M, Hernández E, Vidal A, Ruberto L, Melo C. Marenssi S. Criscuolo M. Memoli M. Arguelles M.& Mac Cormack W.P. 2008. Bizionia argentinensis sp. nov., isolated from surface marine water in Antarctica. International Journal of Systematic and Evolutionary Microbiology. 58, 2363–2367. 10.3402/polar.v31i0.18507.
  • Bowman J.P. Pseudoalteromonas prydzensis sp. nov., a psychrotrophic, halotolerant bacterium form Antarctic sea ice. International Journal of Systematic Bacteriology. 1998; 48: 1037–1041. 10.3402/polar.v31i0.18507.
  • Bowman J.P. McCammon S.A. Brown M.V. Nichols D.S. McMeekin T.A. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Applied and Environmental Microbiology. 1997; 63: 3068–3078.
  • Bowman J.P. McCammon S.A. Gibson J.A. Robertson L. Nichols P.D. Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Applied and Environmental Microbiology. 2003; 69: 2448–2462. 10.3402/polar.v31i0.18507.
  • Bozal N. Montes M.J. Tudela E. Guinea J. Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. and Psychrobacter fozii sp. nov. International Journal of Systematic and Evolutionary Microbiology. 2003; 53: 1093–1100. 10.3402/polar.v31i0.18507.
  • Bozal N. Tudela E. Rosselló-Mora R. Lalucat J. Guinea J. Pseudoalteromonas antarctica sp. nov., isolated from an Antarctic coastal environment. International Journal of Systematic Bacteriology. 1997; 47: 345–351. 10.3402/polar.v31i0.18507.
  • Brinkmeyer R. Knittel K. Jürgens J. Weyland H. Amann R. Helmke E. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Applied and Environmental Microbiology. 2003; 69: 6610–6619. 10.3402/polar.v31i0.18507.
  • Brizzio S. Turchetti B. Libkind D. Buzzini P. Broock M. Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Canadian Journal of Microbiology. 2007; 53: 519–525. 10.3402/polar.v31i0.18507.
  • Brown M.V. Bowman J.P. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiology Ecology. 2001; 35: 267–275. 10.3402/polar.v31i0.18507.
  • Collins T. D'Amico S. Marx J.C. Feller G. Gerday C. Cold adapted enzymes. Physiology and biochemistry of extremophiles. Gerday C. Glansdorff N. ASM Press. Washington DC, 2007; 165–179.
  • Dang H. Zhu H. Wang J. Li T. Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World Journal of Microbiology and Biotechnology. 2009; 25: 71–79. 10.3402/polar.v31i0.18507.
  • Dias A, Dini Andreote F, Dini-Andreote F, Lacava P.T, Sá A.L, Melo I.S, Azevedo J.L. & Araújo W.L. 2009. Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World Journal of Microbiology and Biotechnology. 25, 1305–1311. 10.3402/polar.v31i0.18507.
  • Flocco C.G. Gomes N.C.M. Mac Cormack W.P. Smalla K. Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the maritime Antarctic. Environmental Microbiology. 2009; 11: 700–714. 10.3402/polar.v31i0.18507.
  • Groudieva T. Kambourova M. Yusef H. Royter M. Grote R. Trinks H. Antranikian G. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles. 2004; 8: 475–488. 10.3402/polar.v31i0.18507.
  • Hernández E.A. Ferreyra G.A. Ruberto L.A.M. Mac Cormack W.P. The water column as an attenuating factor of the UVR effects on bacteria from a coastal Antarctic marine environment. Polar Research. 2009; 28: 390–398. 10.3402/polar.v31i0.18507.
  • Hernández E.A. Mac Cormack W.P. Changes in viability of two Antarctic marine bacteria exposed to solar radiation in the water column: influence of vertical mixing. Revista Argentina de Microbiología. 2007; 39: 177–183.
  • Holmström C. Kjelleberg S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiology Ecology. 1999; 30: 285–293.
  • Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, François J.M, Baise E. Feller G.& Gerday C. 2001. Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Applied and Environmental Microbiology. 67, 1529–1535. 10.3402/polar.v31i0.18507.
  • Kumar L. Awashi G. Singh B. Extremophiles: a novel source of industrially important enzymes. Biotechnology. 2011; 10: 121–135. 10.3402/polar.v31i0.18507.
  • Lanzarotti E, Pellizza L, Bercovich A, Foti M, Coria S.H, Vázquez S.C, Ruberto L, Hernández E.A, Dias R.L, Mac Cormack W.P, Cicero D.O, Smal C, Nicolas M.F, Ribeiro Vasconcelos A.T, Marti M.A. & Turjanski A.G. 2011. Draft genome sequence of Bizionia argentinensis, isolated from Antarctic surface water. Journal of Bacteriology. 193, 6797–6798. 10.3402/polar.v31i0.18507.
  • Li N, Meng K, Wang Y, Shi P, Luo H, Bai Y, Yang P. &Yao B. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Applied Microbiology and Biotechnology. 80, 231–240. 10.3402/polar.v31i0.18507.
  • Olivera N.L. Sequeiros C. Nievas M.L. Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de los Estados, Argentina. Extremophiles. 2007; 11: 517–526. 10.3402/polar.v31i0.18507.
  • Raes M, Vanreusel A, De Broyer C, Martin P, d'Udekem d'Acoz C, Robert H, Havermans C. De Ridder C. Dauby P. & David B. 2009. BIANZO II: biodiversity of three representative groups of the Antarctic zoobenthos—coping with change. Final report. Brussels: Belgian Science Policy, Research Program Science for a Sustainable Development.
  • Ruberto L. Dias R. Lo Balbo A. Vázquez S.C. Hernández E.A. Mac Cormack W.P. Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil. Journal of Applied Microbiology. 2009; 106: 1101–1110. 10.3402/polar.v31i0.18507.
  • Ruberto L, Vázquez S.C, Dias R.L, Hernández E.A, Coria S.H, Levin G, Lo Balbo A. & Mac Cormack W.P. 2010. Small-scale studies towards a rational use of bioaugmentation in an Antarctic hydrocarbon-contaminated soil. Antarctic Science. 22, 463–469. 10.3402/polar.v31i0.18507.
  • Schloss I.R, Ferreyra G.A. Ruiz-Pino D. Phytoplankton biomass in Antarctic shelf zones: a conceptual model based on PotterCove, King George Island. Journal of Marine Systems. 2002; 36: 129–143. 10.3402/polar.v31i0.18507.
  • Schulze A.D. Alabi A.O. Sheldrake A.R.T. Miller K.M. Bacterial diversity in a marine hatchery: balance between pathogenic and potentially probiotic bacterial strains. Aquaculture. 2006; 256: 50–73. 10.3402/polar.v31i0.18507.
  • Srinivas T.N, Nageswara Rao S.S, Vishnu Vardhan Reddy P, Pratibha M.S, Sailaja B, Kavya B, Hara Kishore K. Begum Z, Singh S.M. & Shivaji S. 2009. Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of Kongsfjorden and Ny-Alesund, Svalbard, Arctic. Current Microbiology. 59, 537–547. 10.3402/polar.v31i0.18507.
  • Sunnotel O. Nigam P. Pectinolytic activity of bacteria isolated from soil and two fungal strains during submerged fermentation. World Journal of Microbiology and Biotechnology. 2002; 18: 835–839. 10.3402/polar.v31i0.18507.
  • Truong L.V. Tuyen H. Helmke E. Binh L.T. Schweder T. Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles. 2001; 5: 35–44. 10.3402/polar.v31i0.18507.
  • Tutino M.L. Parrilli E. Giaquinto L. Duilio A. Sannia G. Feller G. Marino G. Secretion of alpha-amylase from Pseudoalteromonas haloplanktis TAB23: two different pathways in different hosts. Journal of Bacteriology. 2002; 184: 5814–5817. 10.3402/polar.v31i0.18507.
  • Ulrich A. Klimke G. Wirth S. Diversity and activity of cellulose-decomposing bacteria, isolated from a sandy and a loamy soil after long-term manure application. Microbial Ecology. 2007; 55: 512–522. 10.3402/polar.v31i0.18507.
  • Vázquez S, Nogales B, Ruberto L, Hernández E, Christie-Oleza J, Lo Balbo A, Bosch R, Lalucat J. & Mac Cormack W. 2009. Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microbial Ecology. 57, 598–610. 10.3402/polar.v31i0.18507.
  • Vázquez S. Ruberto L. Mac Cormack W. Properties of extracellular proteases from three psychrotolerant Stenotrophomonas maltophilia isolated from Antarctic soil. Polar Biology. 2005; 28: 319–325. 10.3402/polar.v31i0.18507.
  • Vázquez S.C. Coria S.H. Mac Cormack W.P. Extracellular proteases from eight psychrotolerant Antarctic strains. Microbiological Research. 2004; 159: 157–166. 10.3402/polar.v31i0.18507.
  • Vázquez S.C. Hernández E. Mac Cormack W.P. Extracellular proteases from the Antarctic marine Pseudoalteromonas sp. P96–47 strain. Revista Argentina de Microbiología. 2008; 40: 63–71.
  • Vynne N.G. Mansson M. Nielsen K.F. Gram L. Bioactivity, chemical profiling, and 16S rRNA-based phylogeny of Pseudoalteromonas strains collected on a global research cruise. Marine Biotechnology. 2011; 13: 1062–1073. 10.3402/polar.v31i0.18507.
  • Yu Y. Li H.R. Zeng Y.X. Chen B. Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, eastern Antarctica. Marine Drugs. 2011; 31: 184–195. 10.3402/polar.v31i0.18507.
  • Zeng R. Xiong P. Wen J. Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles. 2006; 10: 79–82. 10.3402/polar.v31i0.18507.
  • Zhou M.Y, Chen X.L, Zhao H.L, Dang H.Y, Luan X.W, Zhang X.Y, He H.L, Zhou B.C. & Zhang Y.Z. 2009. Diversity of both the culturable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea. Microbial Ecology. 58, 582–590. 10.3402/polar.v31i0.18507.