674
Views
1
CrossRef citations to date
0
Altmetric
Research/review articles

Contrasts between the cryoconite and ice-marginal bacterial communities of Svalbard glaciers

, , , , , , & show all
Article: 19468 | Published online: 22 May 2013

References

  • Alsos I.G, Eidesen P.B, Ehrich D, Skrede I, Westergaard K, Jacobsen G.H, Landvik J.Y, Taberlet P, Brochman C. Frequent long-distance plant colonization in the changing Arctic. Science. 2007; 316: 1606–1609.
  • Anderson M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecology. 2001; 26: 32–46.
  • Anderson M.J, Willis T.J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003; 84: 511–525.
  • Aoki I. Diversity and rank-abundance relationship concerning biotic compartments. Ecological Modelling. 1995; 82: 21–26.
  • Barberan A, Bates S.T, Casamayor E.O, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME Journal. 2012; 6: 343–351.
  • Bayley W.S. Mineralogy and petrography. The American Naturalist. 1891; 25: 138–146.
  • Bent S.J, Forney L.J. The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME Journal. 2008; 2: 689–695.
  • Blackwood C.B, Hudleston D, Zak D.R, Buyer J.S. Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Applied and Environmental Microbiology. 2007; 73: 5276–5283.
  • Borgatti S.P. NetDraw software for network visualization. 2002; Lexington, KY: Analytic Technologies.
  • Borgatti S.P, Everett M.G, Freeman L.C. UCINET for Windows: software for social network analysis. 2002; Harvard, MA: Analytic Technologies.
  • Camarinha-Silva A, Wos-Oxley M.L, Jáuregui R, Becker K, Pieper D.H. Validating T-RFLP as a sensitive and high-throughput approach to assess bacterial diversity patterns in human anterior nares. FEMS Microbiology Ecology. 2012; 79: 98–108.
  • Cameron K.A, Hodson A.J, Osborn A.M. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiology Ecology. 2012; 82: 254–267.
  • Caruso T, Chan Y, Lacap D.C, Lau M.C.Y, McKay C.P, Pointing S.B. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME Journal. 2011; 5: 1406–1413.
  • Cook J, Hodson A, Telling J, Anesio A, Irvine-Fynn T, Bellas C. The mass-area relationship within cryoconite holes and its implications for primary production. Annals of Glaciology. 2010; 51: 106–110.
  • Courtney K.C, Bainard L.D, Sikes B.A, Koch A.M, Maherali H, Klironomos J.N, Hart M.M. Determining a minimum detection threshold in terminal restriction fragment length polymorphism analysis. Journal of Microbiological Methods. 2012; 88: 14–18.
  • Dumbrell A.J, Nelson M, Helgason T, Dytham C, Fitter A.H. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME Journal. 2009; 4: 337–345.
  • Dunbar J, Ticknor L.O, Kuske C.R. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Applied and Environmental Microbiology. 2000; 66: 2943–2950.
  • Edwards A, Anesio A.M, Rassner S.M, Sattler B, Hubbard B.P, Perkins W.T, Young M, Griffith G.W. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME Journal. 2011; 5: 150–160.
  • Fierer N. Tilting at windmills: a response to a recent critique of terminal restriction fragment length polymorphism data. Applied and Environmental Microbiology. 2007; 73: 8041–8042.
  • Fierer N, Bradford M.A, Jackson R.B. Toward an ecological classification of soil bacteria. Ecology. 2007; 88: 1354–1364.
  • Fountain A.G, Tranter M, Nylen T.H, Lewis K.J, Mueller D.R. Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. Journal of Glaciology. 2004; 50: 35–45.
  • Fuhrman J, Steele J. Community structure of marine bacterioplankton: patterns, networks, and relationships to function. Aquatic Microbial Ecology. 2008; 53: 69–81.
  • Gajda R.T. Cryoconite phenomena on the Greenland Ice Cap in the Thule area. Canadian Geographer. 1958; 3: 35–44.
  • Gerdel R.W, Drouet F. The Cryoconite of the Thule area, Greenland. Transactions of the American Microscopical Society. 1960; 79: 256–272.
  • Glasser N.F, Hambrey M.J. Styles of sedimentation beneath Svalbard valley glaciers under changing dynamic and thermal regimes. Journal of the Geological Society. 2001; 158: 697–707.
  • Gribbon P.W.F. Cryoconite holes on Sermikavask, West Greenland. Journal of Glaciology. 1979; 22: 177–181.
  • Hodkinson I.D, Coulson S.J, Webb N.R. Community assembly along proglacial chronosequences in the High Arctic: vegetation and soil development in north-west Svalbard. Journal of Ecology. 2003; 91: 651–663.
  • Hodson A, Anesio A.M, Ng F, Watson R, Quirk J, Irvine-Fynn T, Dye A, Clark C, McCloy P, Kohler J, Sattler B. A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. Journal of Geophysical Research—Biogeosciences. 2007; 112: G04S36.
  • Hodson A, Anesio A.M, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B. Glacial ecosystems. Ecological Monographs. 2008; 78: 41–67.
  • Irvine-Fynn T.D.L, Bridge J.W, Hodson A.J. In situ quantification of supraglacial cryoconite morpho-dynamics using time-lapse imaging: an example from Svalbard. Journal of Glaciology. 2011; 57: 651–657.
  • Irvine-Fynn T.D.L, Edwards A, Newton S, Langford H, Rassner S.M, Telling J, Anesio A.M, Hodson A.J. Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. Environmental Microbiology. 2012; 14: 2998–3012.
  • Kastovska K, Stibal M, Sabacka M, Cerna B, Santruckova H, Elster J. Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biology. 2007; 30: 277–287.
  • Langford H, Hodson A, Banwart S, Bøggild C. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology. 2010; 51: 87–94.
  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W. How to get more out of molecular fingerprints: practical tools for microbial ecology. Environmental Microbiology. 2008; 10: 1571–1581.
  • Mindl B, Anesio A.M, Meirer K, Hodson A.J, Laybourn-Parry J, Sommaruga R, Sattler B. Factors influencing bacterial dynamics along a transect from supraglacial runoff to proglacial lakes of a High Arctic glacier. FEMS Microbial Ecology. 2007; 59: 307–317.
  • Moreau M, Mercier D, Laffly D, Roussel E. Impacts of recent paraglacial dynamics on plant colonization: a case study on Midtre Lovénbreen foreland, Spitsbergen (79°N). Geomorphology. 2008; 95: 48–60.
  • Mueller D.R, Pollard W.H. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biology. 2004; 27: 66–74.
  • Ofiteru I.D, Lunn M, Curtis T.P, Wells G.F, Criddle C.S, Francis C.A, Sloan W.T. Combined niche and neutral effects in a microbial wastewater treatment community. Proceedings of the National Academy of Sciences. 2010; 107: 15345–15350.
  • Osborn A.M, Moore E.R.B, Timmis K.N. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environmental Microbiology. 2000; 2: 39–50.
  • Philippot L, Andersson S.G.E, Battin T.J, Prosser J.I, Schimel J.P, Whitman W.B, Hallin S. The ecological coherence of high bacterial taxonomic ranks. Nature Reviews Microbiology. 2010; 8: 523–529.
  • Prosser J.I. Ecosystem processes and interactions in a morass of diversity. FEMS Microbiology Ecology. 2012; 81: 507–519.
  • Schutte U.M.E, Abdo Z, Bent S.J, Williams C.J, Schneider G.M, Solheim B, Forney L.J. Bacterial succession in a glacier foreland of the High Arctic. ISME Journal. 2009; 3: 1258–1268.
  • Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe C.C. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results?. Journal of Microbiological Methods. 2007; 69: 470–479.
  • Smoot M.E, Ono K, Ruscheinski J, Wang P.-L, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011; 27: 431–432.
  • Steele J.A, Countway P.D, Xia L, Vigil P.D, Beman J.M, Kim D.Y, Chow C.E.T, Sachdeva R, Jones A.C, Schwalbach M.S, Rose J.M, Hewson I, Patel A, Sun F, Caron D.A, Fuhrman J.A. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME Journal. 2011; 5: 1414–1425.
  • Stibal M, Tranter M, Benning L.G, Řehák J. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environmental Microbiology. 2008; 10: 2172–2178.
  • Takeuchi N. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Annals of Glaciology. 2002; 34: 409–414.
  • Takeuchi N, Kohshima S, Goto-Azuma K, Koerner R. Biological characteristics of dark colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps). Memoirs of the National Institute of Polar Research. 2001; 54: 495–505.
  • Takeuchi N, Kohshima S, Seko K. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic Antarctic and Alpine Research. 2001; 33: 115–122.
  • Takeuchi N, Nishiyama H, Li Z. Structure and formation process of cryoconite granules on Ürümqi glacier No. 1, Tien Shan, China. Annals of Glaciology. 2010; 51: 9–14.
  • Telling J, Anesio A.M, Tranter M, Irvine-Fynn T, Hodson A, Butler C, Wadham J. Nitrogen fixation on Arctic glaciers, Svalbard. Journal of Geophysical Research—Biogeosciences. 2011; 116: G03039.
  • Telling J, Anesio A.M, Tranter M, Stibal M, Hawkings J.R, Irvine-Fynn T.D.L, Hodson A, Butler C, Yallop M, Wadham J. Controls on the autochthonous production and respiration of organic matter in cryoconite holes on High Arctic glaciers. Journal of Geophysical Research—Biogeosciences. 2012; 117: G01017.
  • Tieber A, Lettner H, Bossew P, Hubmer A, Sattler B, Hofmann W. Accumulation of anthropogenic radionuclides in cryoconites on alpine glaciers. Journal of Environmental Radioactivity. 2009; 100: 590–598.
  • Wharton R.A, McKay C.P, Simmons G.M, Parker B.C. Cryoconite holes on glaciers. Bioscience. 1985; 35: 499–503.
  • Wilson J.B. Methods for fitting dominance/diversity curves. Journal of Vegetation Science. 1991; 2: 35–46.
  • Xiang S.-R, Shang T.-C, Chen Y, Yao T.-D. Deposition and postdeposition mechanisms as possible drivers of microbial population variability in glacier ice. FEMS Microbiology Ecology. 2009; 70: 165–176.